
FreeGen: Bridging Visual-Linguistic Discrepancies Towards Diffusion-based
Pixel-level Data Synthesis

Wenzhuang Wang1,2, Mingcan Ma2, Yong Chen2, Changqun Xia3∗, Zhenbao Liang2, Jia Li1*

1State Key Laboratory of Virtual Reality Technology and Systems, SCSE, Beihang University
2 Geely Automobile Research Institute

3 Pengcheng Laboratory
{wz wang, jiali}@buaa.edu.cn, xiachq@pcl.ac.cn

Abstract

Text-to-image diffusion model has inspired research into text-
to-data synthesis without human intervention, where spatial
attentions correlated with semantic entities in text prompts
are primarily interpreted as pseudo-masks. However, these
vannila attentions often deliver visual-linguistic discrepan-
cies, in which the associations between image features and
entity-level tokens are unstable and divergent, yielding infe-
rior masks for realistic applications, especially in more prac-
tical open-vocabulary settings. To tackle this issue, we pro-
pose a novel text-guided self-driven generative paradigm,
termed FreeGen, which addresses the discrepancies by re-
calibrating intrinsic visual-linguistic correlations and serves
as a real-data-free method to automatically synthesize open-
vocabulary pixel-level data for arbitrary entities. Specifically,
we first learn an Attention Self-Rectification mechanism to
reproject the inherent attention matrices to achieve robust
semantic alignment, thereby obtaining class-discriminative
masks. A Temporal Fluctuation Factor is present to assess
mask quality based on its variation over uniform sampling
timesteps, enabling the selection of reliable masks. These
masks are then employed as self-supervised signals to sup-
port the learning of an Entity-level Grounding Decoder in
a self-training manner, thus producing open-vocabulary seg-
mentation results. Extensive experiments show that the exist-
ing segmenters trained on FreeGen narrow the performance
gap with real data counterparts and remarkably outperform
the state-of-the-art methods.

Introduction
Modern semantic segmenters typically demand vast vol-
umes of visual images paired with dense annotations to
achieve satisfactory fine-grained recognition. However, the
procedure for collecting large-scale images and labelling
them with dense labels is extremely cost-prohibitive for pri-
mary manual efforts. Moreover, due to concerns over data
privacy in real-world applications, acquiring a considerable
number of training data poses a formidable barrier. The
above challenges significantly hinder further performance
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Figure 1: The visualization of visual-linguistic correspon-
dences between our FreeGen and other methods. Compared
to (a) DiffuMask (Wu et al. 2023b) and (b) Dataset Diffu-
sion (Nguyen et al. 2024), Our FreeGen (c) can obtain better
visual-linguistic correlations.

improvements and urge scholars to rethink model-centric se-
mantic segmentation from a data-centric perspective.

In light of generative models, an alternative strategy aims
to harness them to synthesize images with ground truth,
thereby augmenting or even replacing the role for real data
in downstream tasks. Predominant methods (Zhang et al.
2021; Li et al. 2022b) involves utilizing GANs (Goodfel-
low et al. 2014; Brock, Donahue, and Simonyan 2018) to
generate pixel-level data. However, due to the unattainable
Nash equilibrium, these works often produce monotonous
images with imprecise masks. Inspired by the remarkable
success of latent diffusion model (LDM) (Rombach et al.
2022), researchers are unlocking their possibilities in gen-
erating image-mask pairs based on free-form text prompts
without manual intervention, i.e., text-to-data synthesis.

In line with a common thought, the concurrent works Dif-
fusionseg (Ma et al. 2023), DiffuMask (Wu et al. 2023b)
and Attn2Mask (Yoshihashi et al. 2023) directly mine cross-
attention associations, which bind visual features and en-
tity tokens in the text prompt, to roughly identify object
positions and generate semantic labels. Nevertheless, as



shown in Fig.1 (a), cross-attention matrices often exhibit
sparse correlations, leading to subpar masks with ambiguous
edges. Meanwhile, Dataset Diffusion (Nguyen et al. 2024)
further introduces self-attention exponentiation to enhance
mask quality to a certain extent. While the exponential dot-
product sometimes exacerbates the discrepancy when the
cross-attention matrices are coarse, especially when encoun-
tering multiple objects in the synthetic image. As depicted in
Fig.1 (b), visual regions associated with the entity “dog” un-
expectedly incorporate elements of “cat”. Indeed, the visual-
linguistic attentions often suffer from weak alignment and
ambiguous edges throughout the denoising steps, referred
to as “visual-linguistic discrepancies” in our paper, which
imposes a low-quality bottleneck on synthetic masks. Par-
ticularly, this discrepancy leads to more pronounced limi-
tations in practical open-vocabulary mask generation. Al-
though there are several initial attempts (Wu et al. 2023a;
Li et al. 2023), they either rely on real data for supervision
or lack flexibility due to pre-training on specific domains.
Naturally, an urgent question emerges: Could we tackle the
visual-linguistic discrepancies to generate entity-free image-
mask pairs without any manual effort?

To resolve this problem, we propose a novel self-driven
generative paradigm, dubbed FreeGen, which exploits the
intrinsic knowledge of LDM (Rombach et al. 2022) to
tackle visual-linguistic discrepancies and facilitate the au-
tomatic pipeline of open-vocabulary pixel-level data syn-
thesis in segmentation. Specifically, we adopt a two-step
learning strategy. First, we aim to learn an Attention Self-
Rectification (ASR) mechanism to reproject the internal
visual-linguistic correlations, which involves applying a
learnable cross-head interaction matrix to multi-head self-
attention within the latent space to capture informative rela-
tions between visual regions. These relations are then uti-
lized to re-weight spatial cross-attentions, thereby aggre-
gating class-discriminative masks. We introduce a Tempo-
ral Fluctuation Factor to evaluate mask quality and filter
out those low-quality synthetic data based on its variations
over uniform sampling timesteps. Second, these masks serve
as supervisory sources to learn an Entity-level Grounding
Decoder (EGD) in a hardness-aware self-training fashion,
further enhancing external visual-linguistic correlations and
resembling open-vocabulary generative abilities. Once the
two-step training is complete, the EGD is capable of gener-
ating pseudo-masks for arbitrary entities in text prompts.

Extensive experiments on 3 benchmarks show that the ex-
isting segmenters trained on our FreeGen significantly out-
performs Dataset Diffusion (Nguyen et al. 2024) by a sub-
stantial margin of 9.3% in mIoU on VOC 2012 (Everingham
et al. 2010). The contributions of our paper lies in four-folds:

• We propose a self-driven generative FreeGen, which ex-
ploits the inherent diffusion knowledge to achieve open-
vocabulary pixel-level data synthesis without manual ef-
forts via a two-stage training strategy.

• We design an Attention Self-Rectification mechanism,
which strives to recalibrate robust correspondences be-
tween visual features and semantic entities.

• To further enhance open-vocabulary segmentation abil-

ities, an Entity-level Grounding Decoder is developed
to generate dense masks for arbitrary objects in a hard-
aware self training loop.

• Experiments show that the segmenters trained on Free-
Gen achieve competitive performance against real coun-
terparts. And in open-vocabulary settings, FreeGen de-
livers SOTA results on unseen classes of VOC 2012.

Related Work
Semantic Segmentation. Semantic segmentation aims to si-
multaneously predict class labels and corresponding masks
for objects within the images. Most traditional semantic seg-
menters (Long, Shelhamer, and Darrell 2015; Chen et al.
2017; Zhang et al. 2020a,b; Cheng et al. 2022) are optimised
on numerous image-mask pairs and restricted to a predefined
set of categories present in the training set. To further elevate
the generalised segmentation capabilities of segmenters, re-
cent literatures (Ding et al. 2022; Li et al. 2022a; Liang
et al. 2023) attempt to identify arbitrary object categories
appearing in the image, known as open-vocabulary semantic
segmentation, which often rely on a large-scale multimodal
model, i.e., CLIP (Radford et al. 2021), to learn the align-
ment maps between visual features and text embeddings of
class entities. In this paper, we propose to extend the abil-
ity of “model-centric” semantic segmenters by training them
on synthetic data to realize “data-centric” open-vocabulary
pixel-level data generation.

Diffusion Models for Semantic Segmentation. Dif-
fusion models (Ho, Jain, and Abbeel 2020) represent a
likelihood-based generative strategy that fundamentally rev-
olutionises image synthesis and spawns a series of text-
guided generative models (Nichol et al. 2021; Rombach
et al. 2022; Saharia et al. 2022; Chang et al. 2023) and
their potential in computer vision (Chen et al. 2023; Ban-
dara, Nair, and Patel 2022; Chen, Sun, and Lin 2024), espe-
cially in semantic segmentation (Ji et al. 2023; Zhao et al.
2023; Kondapaneni et al. 2024). Currently, there are two
methodologies for harnessing generative diffusion models
for discriminative segmentation. One approach involves us-
ing it as a feature extractor or directly tuning the denoising
U-Net conditioned on visual images to predict dense labels.
The other approach uses diffusion models to generate photo-
realistic images with dense annotations for downstream aux-
iliary training. For instance, DatasetDM (Wu et al. 2023a)
leverages a few real data to train a P-decoder following Sta-
ble Diffusion, thereby producing images along with percep-
tual labels. While other efforts (Wu et al. 2023b; Nguyen
et al. 2024; Yoshihashi et al. 2024; Li et al. 2023) seek to
construct synthetic segmentation datasets without any man-
ual involvement, achieving promising results comparable to
real-data-required counterparts.

However, these works often struggle with unstable in-
termediate attentions in the latent space to roughly gener-
ate suboptimal masks. In response, our paper highlights a
novel self-driven paradigm that leverages inherent diffusion
knowledge to rectify visual-linguistic correspondences, and
additionally incorporates a temporal fluctuation factor to se-
lect feasible synthetic masks.



Figure 2: Overall pipeline of our FreeGen: (1) The first-stage involves learning an Attention Self-Rectification mechanism for
recalibrating self- and cross-attention maps, achieving strong correspondences. (2) While second-stage involves learning an
Entity-level Grounding Decoder for open-vocabulary mask generation.

Method
In this section, we will elaborate our FreeGen based on LDM
(Rombach et al. 2022), as shown in Fig. 3. Specifically, we
develop a two-stage learning strategy, where the first-stage
training involves learning an Attention Self-Rectification
mechanism with a temporal fluctuation factor to deal with
the visual-linguistic discrepancies, constructing and select-
ing a synthetic segmentation dataset on base classes with
class-discriminative annotations, and the second-stage train-
ing involves learning an Entity-level Grounding Decoder
to generate open-vocabulary masks for novel classes in a
hardness-aware self-training manner.

Problem Formulation
Given a set of textual captions P , a text-guided diffusion
model ϕ, which consists of a text encoder, a variational au-
toencoder and the temporal U-Net, refers to the generation
of realistic images I from Gaussian noise z ∼ N (0, 1) via
a denoising Markov chain of length T , i.e., I = ϕ(z,P, T ).
To achieve high-fidelity image synthesis, intra-visual and
inter-visual-linguistic interplays occur continuously at mul-
tiple levels within the temporal U-Net. For each denoising
timestep t ∈ [1, T ], this procedure delivers available in-
termediate representations within the latent space, includ-
ing self-attention maps As, cross-attention maps Ac and
multi-scale features F . Our key insight is that the interme-
diate representations accumulate the intrinsic knowledge in
the context of the diffusion model, allowing data synthe-
sis without any manual intervention. Our FreeGen, driven
by the intrinsic knowledge, extends text-to-image synthesis
to more challenging open-vocabulary text-to-data synthesis,

i.e. {I,M∗} = ϕ(z,P, T ), via a two-stage training strat-
egy. M∗ denotes open-vocabulary dense annotations for ar-
bitrary semantic entities. Finally, we can get obtain a pixel-
level open-vocabulary dataset, i.e., Dtrain = {(I,P,M∗)}.

First-stage: Attention Self-Rectification
Recalibrate Correspondences from Disentangle Atten-
tion Maps. Most existing works (Wu et al. 2023b) ap-
ply coarse cross-attentions that may deviate from entity to-
kens to finish pseudo-labels, which often deliver unreliable
masks. In this regard, we aim to learn an Attention Self-
Rectification mechanism to recalibrate visual-linguistic cor-
respondences from disentangled two parts: self- and cross-
attention maps. The former encodes pairwise similarities
within intra-visual regions and the latter expresses inter-
visual-linguistic correlations. To obtain class-discriminative
masks with object locations and categories, we adopt the for-
mer to reweight the latter in an adaptive learning manner.
Adaptive Self-attention Weight Map. Multi-head self-
attention matrices capture global dependencies among vi-
sual regions, in which each head highlights specific object
positions and maintaining their contextual information. For
the timestep t, we introduce a learnable cross-head interac-
tion matrix W ∈ RH×N to dynamically aggregate them and
generate a new adaptive self-attention weight map As,t,

As,t,h = Wh ⊙ Softmax(
Qv

h,t(K
v
h,t)

⊤
√
dh

), h ∈ [1, H], (1)

where Qv
h,t and Kv

h,t ∈ RH×N×C are flattened vectors of
sequence length N from latent visual features. C is the chan-
nel dim, H denotes the number of attention heads and dh is
the h-th head dim.



Spatial Cross-attention Re-weighting. Cross-attention
matrices focus on the associations between latent image fea-
tures and semantic entities in text prompts. However, as
mentioned above, the vanilla cross-attention maps are coarse
and sparse, which means that the visual-linguistic correla-
tions suffer from weak alignment, leading to voids for the
synthetic mask only by simple thresholding. In this context,
we introduce a learnable linear layer Υ ∈ RC×C to repro-
ject the key vectors Ky

t ∈ RH×N
′
×C (N

′
is the number of

class entities) corresponding to the class-entities y, allowing
for a new cross-attention map Ac,t ∈ RH×N×N

′

for any
given entity at timestep t:

Ac,t,h = Softmax(
Qv

h,t(Υh(K
y
h,t))

⊤
√
dh

), h ∈ [1, H], (2)

Afterwards, we exploit the adaptive As,t to re-weight the
Ac,t,h to obtain spatially informative rectified attention

maps A∗,t ∈ RH×N×N
′

, which can be formalized as:

A∗,t = As,t · Ac,t. (3)

Temporal Fluctuation Factor. To further bridge visual-
linguistic discrepancies, we design a Temporal Fluctuation
Factor (TFF) for data evaluation and filtering. As shown in
Fig. 3, the synthetic masks across timesteps often show large
variance fluctuations in the ambiguous regions. Observing
this, TFF evaluates the quality of synthetic image-mask pairs
based on their variations over uniform sampling timesteps.

Specifically, we use the text-guided diffusion model ϕ to
output the initial latent state z ∈ RH×W×C , where H, W
are height and width. Then we denoise z in the uniform
sampling timesteps S = {T1, T2, . . . , TK} within the U-Net
to obtain different masks of A∗ over K timesteps. Finally,
the TFF can be calculated from the variance fluctuations be-
tween different masks, which can be formulated as:

TFF =
1

K · H · W

K∑
i=1

H∑
h=1

W∑
w=1

|Mi,h,w −Mi,h,w|, (4)

where M and M denote the synthetic masks and the mean
of them, respectively. After this, we can select high-quality
synthetic data, as shown in the Supp, and ultimately harvest
better synthetic masks to train our ASR mechanism.

Training Strategy. We use only the A∗,t from the last
timestep, averaging along the head dimension to, extract
class-discriminative heat maps, which are then upsampled
and reshaped to image width H and height W , with each
heat map corresponding to a class entity. To learn the ASR
mechanism, we also require pseudo-labeled segmentation
maps G∗ ∈ RH×W×N

′

. Unlike the existing work (Li et al.
2023), which exploits the segmenter pre-trained on specific
domain datasets, we adopt a class-agnostic segmenter, i.e.,
SAM (Kirillov et al. 2023), to generate accurate seman-
tic masks via point prompts. In particular, we choose three
points with the strongest response and the farthest distance
in each channel of A∗,t without ASR to obtain G∗. Our train-
ing objective is to learn rectified attention maps that are con-

Figure 3: Visualization of the temporal fluctuation factor
computation principle, which shows the masks at different
timesteps and the fluctuation heatmaps among them.

sistent with pseudo-labeled segmentation maps:

L1(A∗,G∗) =

N
′∑

k=1

BCE(A∗(..., k),G∗(..., k)), (5)

where BCE is the Binary Cross-Entropy (Jadon 2020) loss.
The training strategy allows us to generate pseudo-masks for
multi-class objects in the synthetic image.

Second-stage: Entity-level Grounding Decoder
After the first-stage training, we can transform heat-maps
A∗ into a set of class-discriminative masks M. Assume
we have a synthetic training set for base class entities
(i.e., bus, cat) consisting of B triplets, i.e., Dtrain =
{(I1, p1,M1), .., (IB , pB ,MB)}, where pi indicates the
text prompt. The synthetic training set is utilized to support
the learning of our EGD, which comprises three modules: a
text adapter, an entity-guided feature alignment module, and
an open-vocabulary grounding decoder. The second-stage
training further reinforces the connections between visual
features and open-vocabulary semantic entities, providing
our FreeGen with the ability to fine-generate novel classes.

Entity-guided Feature Alignment. Given a synthetic im-
age I ∈ RH×W×3 from the training set, we can extract the
multi-scale feature maps F within the temporal U-Net, cor-
responding to four resolutions, i.e., 64×64, 32×32, 16×16
and 8 × 8, in a single forward diffusion process (t = 1).
We concatenate visual features with the same resolution and
compress their channel dimensions with 3 × 3 convolution
blocks. Then, F and linguistic embeddings Y can be inter-
acted bidirectionally layer by layer as follows:

Fl+1 = BiAttn(φ(Fl),Yl) + Fl, (6)
Yl+1 = BiAttn(ξ(Yl),Fl) + Yl, (7)

where φ(·) denotes multi-scale deformable self-attention
(Zhu et al. 2020), linguistic embeddings are further re-
fined by vanilla transformer ξ(·) layers (Vaswani 2017), and
BiAttn denotes the bidirectional attention blocks.

Open-vocabulary Grounding Decoder. Based on the
Mask2former head (Cheng et al. 2022), we concatenate



Segmenter Backbone Training Set Semantic Segmentation (IoU) for Sampled Classes /% mIoU
# Real # Synthetic aeroplane bird boat bus car cat chair cow dog sofa

Train with Full Real Data
DeepLabV3 R50 VOC (R:10.6k) - 89.2 89.9 74.1 94.5 87.7 92.4 34.7 89.1 88.1 43.5 77.4
DeepLabV3 R101 VOC (R:10.6k) - 93.6 93.4 67.0 95.9 90.7 94.9 36.8 89.4 89.7 58.7 79.8
Mask2former R50 VOC (R:10.6k) - 87.5 94.4 70.6 95.5 87.7 92.2 44.0 85.4 89.1 53.6 77.2
Mask2former Swin-B VOC (R:10.6k) - 97.0 93.7 71.5 91.7 89.6 96.5 57.5 95.9 96.8 65.6 84.3

Train with Pure Synthetic Data
Mask2former R50 - DiffuMask (S: 60.0k) 80.7 86.7 56.9 81.2 74.2 79.3 14.7 63.4 65.1 27.8 57.4
Mask2former Swin-B - DiffuMask (S: 60.0k) 90.8 92.9 67.4 88.3 82.9 92.5 27.2 92.2 86.0 49.8 70.6
Mask2former R50 - DatasetDM (S: 40.0k) - 84.7 - 86.0 79.2 74.4 - - 63.7 - 60.3
Mask2former Swin-B - DatasetDM (S: 40.0k) - 93.4 - 93.8 78.8 94.5 - - 79.6 - 73.7
DeepLabV3 R50 - Attn2mask (S: 80.0k) 65.7 82.5 64.7 87.0 76.0 83.2 25.0 65.3 73.0 13.6 62.2
DeepLabV3 R101 - Dataset Diffusion (S: 40.0k) 81.6 73.3 62.2 85.5 64.8 78.2 21.6 69.2 71.8 41.8 64.6
DeepLabV3 R50 - FreeGen (S: 40.0k) 86.7 84.2 68.2 92.8 78.3 79.6 28.8 78.5 66.5 42.1 67.5
DeepLabV3 R101 - FreeGen (S: 40.0k) 88.0 89.7 75.6 93.9 81.6 85.3 32.6 82.6 73.0 45.9 70.3
Mask2former R50 - FreeGen (S: 40.0k) 86.6 84.3 67.6 93.2 79.2 86.8 34.6 82.3 75.0 46.9 69.6
Mask2former Swin-B - FreeGen (S: 40.0k) 90.8 89.5 81.2 94.6 76.5 93.7 39.4 92.7 88.3 52.5 76.3

Train with Synthetic Data and Finetune on Real Data
Mask2former R50 VOC (R:5.0k) DiffuMask (S: 60.0k) 85.4 92.8 74.1 92.9 83.7 91.7 38.4 86.5 86.2 39.8 77.6
Mask2former Swin-B VOC (R:5.0k) DiffuMask (S: 60.0k) 95.6 94.4 72.3 96.9 92.9 96.6 51.5 96.7 95.5 70.2 84.9
Mask2former R50 VOC (R:5.0k) FreeGen (S: 40.0k) 89.6 88.1 71.5 89.1 82.4 88.3 42.2 90.0 84.6 60.2 78.3
Mask2former Swin-B VOC (R:5.0k) FreeGen (S: 40.0k) 96.8 94.8 76.2 96.0 91.8 96.5 52.4 95.0 94.4 69.2 85.1

Train with Real & Synthetic Data
DeepLabV3 R50 VOC (R:10.6k) FreeGen (S: 20.0k) 91.7 91.6 75.3 93.5 86.7 93.0 38.1 91.5 91.1 52.3 78.5
DeepLabV3 R101 VOC (R:10.6k) FreeGen (S: 20.0k) 92.7 91.2 79.1 95.9 88.9 94.4 39.9 91.7 90.9 55.9 80.5
Mask2former R50 VOC (R:10.6k) FreeGen (S: 20.0k) 86.5 90.4 76.3 93.0 91.8 93.7 39.9 78.6 87.3 54.4 78.3
Mask2former Swin-B VOC (R:10.6k) FreeGen (S: 20.0k) 95.3 96.7 78.7 96.8 92.2 96.6 44.7 92.4 95.1 68.1 84.8

Table 1: Performance results of segmenters DeepLabV3 and Mask2former on VOC 2012 val. ’R’ and ’S’ denote the ”Real”
and ”Synthetic” dataset. The best results are in bold and the second best results are underlined.

the linguistic embeddings from the aforementioned align-
ment module with the learnable queries to learn the seman-
tic concepts for arbitrary entities, thereby supporting the
open-vocabulary mask generation. The classification score
for each object category is obtained by the dot product be-
tween query and linguistic features, followed by a Sigmoid
activation. More details are in the Supp.

Hardness-aware Self-training. To guarantee the learn-
ing effectiveness of EGD, we adopt a hardness-aware self-
training strategy inspired by curriculum learning (Bengio
et al. 2009), which advocates that the decoder starts learning
from simple synthetic image-mask pairs and gradually ad-
vancing to complex ones. To implement this idea, we lever-
age the EGD, pre-trained once on synthetic data, to compute
the loss map for each image-mask pair. To be specific, we
calculate the hardness value S based on pixel-level cross-
entropy losses for N object categories in synthetic images:

S =

N∑
j=1

hj×wj∑
i=1

[(Mi
∗ == j)× Li]

hj × wj
, (8)

where Li is the loss map, hj × wj indicate the area of j-
th object category in the synthetic mask M∗. According to
the hardness values S. We can sort the synthesized data and
select the top 50% for training the decoder, and utilize it to
regenerate the segmentation masks for the remaining 50% of
synthesized images. This has two advantages: first, it helps
to train the decoder effectively, and second, the synthesised
mask can be further refined. To achieve optimisation, we use
dice (Milletari, Navab, and Ahmadi 2016) and cross-entropy
losses for classification, and BCE losses for mask prediction.

Method Segmentor Backbone COCO 2017 VOC 2012

# Synthetic mIoU # Synthetic mIoU

DiffuMask Mask2former R50 - - S: 60k 57.4
Mask2former Swin-B - - S: 60k 70.6

Attn2mask DeepLabV3 R50 - - S: 80k 62.2
Mask2former Swin-B - - S: 80k 71.0

Dataset
Diffusion

DeepLabV3 R50 S: 80k 32.4 S: 40k 61.6
DeepLabV3 R101 S: 80k 34.2 S: 40k 64.8

Mask2former R50 S: 80k 31.0 S: 40k 60.5

DatasetDM Mask2former R50 - - S: 40k 60.3
Mask2former Swin-B - - S: 40k 73.7

FreeGen

DeepLabV3 R50 S: 80k 36.2 S: 40k 67.5
DeepLabV3 R101 S: 80k 37.4 S: 40k 70.3

Mask2former R50 S: 80k 34.5 S: 40k 69.6
Mask2former Swin-B S: 80k 44.3 S: 40k 76.3

Table 2: Comparisons in mIoU between training on synthetic
data and testing on VOC 2012 and COCO 2017 val.

Experiments
Datasets and Experimental Settings
Datasets. We conduct experiments on 3 benchmarks: VOC
2012 (Everingham et al. 2010), augmented with SBD (Har-
iharan et al. 2011) for 10.6k training and 1,449 validation
images in 20 classes; COCO 2017 (Lin et al. 2014) with
118,287 training and 5k validation images in 80 classes; and
Cityscapes (Cordts et al. 2016), an urban scene dataset with
2,975 training and 500 validation images in 19 classes.

Evaluation Metrics. Following previous efforts (Nguyen
et al. 2024; Wu et al. 2023b), we train existing segmenters
on synthetic data and test them on real val data, assessing
mean Intersection over Union (mIoU). For open-vocabulary
setting, the mIoU is measured on seen and unseen classes.

Experimental Setting. To thoroughly assess the genera-
tive capabilities of our FreeGen, we follow three experimen-



Figure 4: Showcase of FreeGen generation and qualitative analysis with SOTA methods. The visualisation results show that our
FreeGen can produce more accurate semantic masks for semantic entities, especially in more challenging multi-class scenarios.

tal protocols: semantic segmentation, open-vocabulary seg-
mentation, and domain generalization, as previously utilized
in (Wu et al. 2023b; Li et al. 2023).

Implementation Details
Our FreeGen, based on the Stable Diffusion V2.1 pre-trained
on LAION5B (Schuhmann et al. 2022), generates 512×512
image-mask pairs via 50 denoising steps. For fair compari-
son, we generate 40k, 80k, and 80k images for VOC 2012,
COCO 2017, and Cityscapes. We choose the vanilla SAM
(Kirillov et al. 2023) to obtain primary masks and set the
uniform sampling timesteps to K = 4 to get temporal fluc-
tuation factor. We train our ASR and EGD using the Adam
optimizer with β1 = 0.9 and β2 = 0.999 for 20 epochs,
where the batch size is 4 and the learning rate is 1e-4.
We train DeepLabV3 and Mask2former on synthetic data
following MMSegmentation’s default settings (Contributors
2020) and compare them with models trained on real data.
Following (Nguyen et al. 2024), to enhance the variety of
textual guidance, we adopt the image captioner BLIP (Li
et al. 2022c) and ChatGPT (Achiam et al. 2023) to derive
more text prompts for object categories.

Main Quantitative & Qualitative Results
Protocol-I: Semantic Segmentation

VOC 2012. Tab. 1 systematically compares the mIoU re-
sults of the DeepLabV3 and Mask2former segmenters. From
Tab. 1, FreeGen boosts the existing semantic segmenters by
a large margin under four training settings. Especially, Free-
Gen achieves a competitive result of 69.6 mIoU against the
full real data of 77.2 mIoU. Without any manual annotation,
FreeGen shows amazing results (within 4% gap) close to
the performance trained on real data for many classes, i.e.,
bird, cat, cow, horse. Furthermore, FreeGen significantly
outperforms DiffuMask, Attn2Mask and Dataset Diffusion
by 7.4% on VOC 2012 val. A point worth highlighting is
that Mask2former trained on FreeGen delivers a 2.6 mIoU

Segmenter Backbone Training Set Sampled Classes /% mIoU
#Real #Synthetic Human Vehicle

Train with Pure Real Data
Mask2former R50 R:3.0k - 83.4 94.5 89.0
Mask2former Swin-B R:3.0k - 85.5 96.0 90.8
Mask2former Swin-B R:1.5k - 84.6 95.3 90.0

Train with Pure Synthetic Data
Mask2former R50 - DiffuMask(S:100.0k) 70.7 85.3 78.0
Mask2former SwinB - DiffuMask(S:100.0k) 72.1 87.0 79.6
Mask2former R50 - FreeGen(S:80.0k) 71.2 86.1 78.7
Mask2former SwinB - FreeGen(S:80.0k) 72.8 87.9 80.4

Finetune on Real Data
Mask2former R50 R:1.5k DiffuMask(S:100.0k) 84.6 95.5 90.1
Mask2former Swin-B R:1.5k DiffuMask(S:100.0k) 86.4 96.4 91.4
Mask2former R50 R:1.5k FreeGen(S:80.0k) 85.3 96.0 90.7
Mask2former Swin-B R:1.5k FreeGen(S:80.0k) 86.6 97.1 91.9

Table 3: Comparisons in mIoU between training on synthetic
data and testing on Cityscapes val.

improvement over DatasetDM (Wu et al. 2023a), which
needs a few real data for supervision. When fine-tuned on
a few real data (5k) or trained jointly with real & synthetic
data, FreeGen consistently delivers performance improve-
ments for segmenters, enabling them to surpass their real
data counterparts, i.e., 78.3 v.s 77.2 for Mask2former (R50).
Fig. 4 illustrates the synthetic image-mask pairs produced
by FreeGen and the segmentation results, highlighting our
method’s superior capability to resolve visual-linguistic dis-
crepancies in complex multi-class data synthesis.

COCO 2017. Tab. 2 reports the comparison results be-
tween FreeGen and SOTA methods on more challeng-
ing COCO dataset. For DeepLabV3, our FreeGen demon-
strates a +3.2%∼+3.8% absolute improvement in mIoU over
Dataset Diffusion. For Mask2former, FreeGen achieves the
best performance with a 3.5% improvement. These results
further demonstrate the applicability of our FreeGen for
multi-class data synthesis. More qualitative results and de-
tailed IoUs for 80 classes are provided in the Supp.

Cityscapes. Tab. 3 presents the comparison results on
Cityscapes val, which involves complex segmentation of ur-
ban street scenes. Following (Wu et al. 2023b), we evaluate



Methods Train Set / #Categories mIoU %

Real / 15 Synthetic / 15+5 Seen Unseen Harmonic
Manual Annotation Supervision

ZS3 " % 78.0 21.2 33.3
CaGNet " % 78.6 30.3 43.7

Joint " % 77.7 32.5 45.9
STRICT " % 82.7 35.6 49.8

SIGN " % 83.5 41.3 55.3
ZegFormer " % 86.4 63.6 73.3

Text Prompt Supervision
Li et al. (R101) % " 62.8 50.0 55.7

DiffuMask (R50) % " 60.8 50.4 55.1
DiffuMask (R101) % " 62.1 50.5 55.7

DiffuMask (Swin-B) % " 71.4 65.0 68.1
DatasetDM (R101) % " 65.1 51.1 57.1

DatasetDM (Swin-B) % " 78.8 60.5 68.4
FreeGen (R50) % " 70.1 51.9 59.6
FreeGen (R101) % " 69.0 53.3 60.1

FreeGen (Swin-B) % " 77.9 64.9 70.8
Manual Annotation & Text Prompt Supervision

Li et.al (R101) " " 83.0 71.3 76.7
FreeGen (R50) " " 77.7 63.4 69.8
FreeGen (R101) " " 80.3 71.5 75.6

FreeGen (Swin-B) " " 84.5 76.5 80.3

Table 4: Performance Comparisons for Zero-Shot Semantic
Segmentation on VOC 2012 val.

Train Set Test Set Sampled Classes mIoU % mIoU
Car Person Motorbike

Cityscapes VOC 2012 val 26.4 32.9 28.3 29.2
ADE20K VOC 2012 val 73.2 66.6 64.1 68.0

DiffuMask VOC 2012 val 74.2 71.0 63.2 69.5
DatasetDM VOC 2012 val 77.9 72.9 70.1 73.6

FreeGen VOC 2012 val 79.2 79.9 80.8 80.0

Table 5: Comparisons for domain Generalization. Person
and Rider of Cityscapes are regarded as the same class.

FreeGen on two general classes, Human and Vehicle, where
“human” contains two subclasses: person and rider, while
“vehicle” includes four subclasses: car, bus, truck and train.
From Tab. 3, we can observe that, when trained on our Free-
Gen and fine-tuned on real data, Mask2former achieves ef-
fective performance improvements, i.e., 91.9 v.s 90.0 mIoU.
Besides, with less synthetic data (80k v.s 100k), FreeGen
outperforms DiffuMask by 0.7% on the vehicle class.

Protocol-II: Open-vocabulary Segmentation. Tab. 4
delves into the open vocabulary segmentation capabilities of
generative FreeGen. Compared to zero-shot semantic seg-
menters (Bucher et al. 2019; Gu et al. 2020; Baek, Oh, and
Ham 2021; Pastore et al. 2021; Cheng et al. 2021; Ding et al.
2022) trained on real manual annotation, our text-prompts-
supervised FreeGen achieves the SOTA results on Unseen
classes, i.e., 64.9 v.s 63.6. Moreover, when fine-tuned on the
real data of Seen classes, the harmonic mean increases to
a promising 80.3. The performance improvement under this
setting validates the open-set generalization capability of our
entity-level grounding decoder. More qualitative results on
open-vocaublary segmentation are available in the Supp.

Protocol-III: Domain Generalization. Tab. 5 shows the
cross-dataset generalization of Mask2former (R50) trained
on different datasets. Compared to the real data, FreeGen ex-

Two Stage One Stage mIoU
HST EGD TFF ASR SAM
" " " " " 69.6
" " " " % 66.2
% " " " " 68.4
% % " " " 67.1
% % % " " 66.4
% % % % " 63.8
% % % % % 60.5

Table 6: Ablation experiments of FreeGen on VOC 2012.

hibits superior domain generalization ability, i.e., 80.0 with
FreeGen v.s 68.0 with ADE20K (Zhou et al. 2017). In par-
ticular, FreeGen outperforms DatasetDM with a remarkable
improvement of 6.4% mIoU. For car class, mask2former
trained with Cityscapes achieves only 26.4, but with Free-
Gen is 79.2. We attribute this gap to differences in object
size and domain shifts between the two datasets.

Ablation Study
Effect of the Components of FreeGen. Tab.6 reports
the effectiveness of the components of FreeGen using
Mask2former (R50) on VOC 2012 val, where HST denotes
hardness-aware self-training. We can see that the raw result
is 60.5% similar to Dataset Diffusion. After one-stage train-
ing for visual-linguistic discrepancy and evaluation for syn-
thetic masks, the mIoU increases to 67.1%, demonstrating
the necessity of our ASR. Two-stage self-training gives a
further improvement of 3.4% on the VOC 2012 val. It should
be noted that without SAM, our FreeGen still achieves a
competitive result of 66.2% mIoU, confirming the effective-
ness of our generative strategy.

Impact of Different Annotations on Synthetic Masks.
We also investigate the impact of three annotations on
synthetic masks, including manual label, pseudo-label and
FreeGen-label. ‘Pseudo-label’ refers to the annotations from
Mask2former (R50) pre-trained on VOC 2012. Experimen-
tal results indicate that FreeGen-label is comparable to
manual-label and significantly exceeds the pseudo-label.
More ablation results are in the Supp.

Conclusion
This paper introduces a novel text-guided self-driven data
synthesis method, FreeGen, which employs a two-stage
training strategy. The first stage focuses on leveraging intrin-
sic diffusion knowledge to resolve visual-linguistic incon-
sistencies, enhanced by a temporal fluctuation factor that se-
lects more reliable synthetic masks. The second stage refines
visual-linguistic alignment and equips FreeGen with the
ability to perform open-vocabulary segmentation in a self-
training loop. Our extensive experiments on three bench-
marks demonstrate that FreeGen significantly narrows the
performance gap between real and synthetic data across var-
ious training configurations. We expect that FreeGen will ac-
celerate the transition from reliance on real data to synthetic
data in dense vision tasks.
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