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Language-Inspired Relation Transfer for Few-Shot
Class-Incremental Learning

Yifan Zhao , Member, IEEE, Jia Li , Senior Member, IEEE, Zeyin Song, and Yonghong Tian , Fellow, IEEE

Abstract—Depicting novel classes with language descriptions by
observing few-shot samples is inherent in human-learning systems.
This lifelong learning capability helps to distinguish new knowl-
edge from old ones through the increase of open-world learning,
namely Few-Shot Class-Incremental Learning (FSCIL). Existing
works to solve this problem mainly rely on the careful tuning of
visual encoders, which shows an evident trade-off between the base
knowledge and incremental ones. Motivated by human learning
systems, we propose a new Language-inspired Relation Transfer
(LRT) paradigm to understand objects by joint visual clues and
text depictions, composed of two major steps. We first transfer the
pretrained text knowledge to the visual domains by proposing a
graph relation transformation module and then fuse the visual and
language embedding by a text-vision prototypical fusion module.
Second, to mitigate the domain gap caused by visual finetuning, we
propose context prompt learning for fast domain alignment and
imagined contrastive learning to alleviate the insufficient text data
during alignment. With collaborative learning of domain align-
ments and text-image transfer, our proposed LRT outperforms the
state-of-the-art models by over 13% and 7% on the final session of
miniImageNet and CIFAR-100 FSCIL benchmarks.

Index Terms—Few-shot learning, class-incremental learning,
language-inspired relation transfer.

I. INTRODUCTION

HUMAN brains show their distinctive advantages in rec-
ognizing new concepts with only a few limited samples,

while not forgetting the old knowledge rapidly. Benefited from
the strong perceptual capability of deep neural networks [1],
[2], recent advances propose to imitate human learning systems
mainly from two aspects, i.e., recognizing new concepts with
extremely few samples and learning without forgetting. For the
first few-shot learning (FSL) challenge, existing works focus
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on network learning with fast optimization strategies [3], [4],
[5] or measuring with appropriate metrics [6], [7], [8]. And
to solve the second challenge as well as alleviate forgetting,
class-incremental learning (CIL) methods have made signifi-
cant progress with mechanisms including rehearsal [9], [10],
[11], novel model consolidation [12], [13] and feature space
regularization strategies [14]. Nevertheless, when considering
these two natural abilities together, unlike human-learning sys-
tems, existing methods encounter significant obstacles [15] for
generalizing on new concepts or catastrophic forgetting on base
knowledge due to the limited new samples for training.

One intuitive idea to solve this problem, i.e., few-shot class-
incremental learning (FSCIL), is to adopt knowledge distilla-
tion [16], [17] from base classes when gradually learning new
concepts. As only a few samples are accessible during incremen-
tal phases, naive distillations with these seen samples also lead
to severe overfitting. To alleviate this, prevailing works dedicate
to decoupling base and incremental learning stages [18] and
then fix or slightly tune the backbone representations [19], [20],
[21]. Besides these works, other research efforts tend to find gen-
eralized feature representations by using sufficient training data
from base sessions. Representative works propose to find the flat-
tened region in optimization [22] or construct virtual classes [23]
when sufficient training samples are available. Although these
works tried to achieve a balanced performance trade-off between
the base classes and incremental classes, the dilemma still exists:
how to represent the novel incremental classes well without
losing distinguishability on the base classes?

When sufficient training samples are available, supervised
learning systems present superior performances with state-of-
the-art visual encoders. As in Fig. 1(a), visual prototypes of
base seen classes filled the embedding space and show clear
classification boundaries. However, in Fig. 1(b), during incre-
mental sessions, features of new classes are still represented
with the identical encoder that is trained with base classes,
which thus leads to prototype confusion or topological dam-
ages. In this paper, we argue to solve this dilemma by a new
Language-inspired Relation Transfer (LRT) paradigm, which
is motivated by the recent advances of Contrastive Language-
Image Pretraining (CLIP) [2]. Different from prevailing methods
with static visual embedding, when learning a novel category of
Cardinal Bird in Fig. 1(b), we introduce the language prompt
(several words or description sentences) as auxiliary information
if there are no sufficient visual samples. Besides, this contrastive
learning paradigm constructs a unified feature alignment space
of text prompts and image-level features. Hence to transfer
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Fig. 1. The motivation of the proposed approach. Visual encoders provide
clear boundaries in (a) when learning with base sufficient data, while resulting
in confused prototypes with only a few samples of novel classes in (b). Our
proposed LRT aims to transfer the pretrained language relationships to help
construct a joint feature representation of both base and novel classes.

the text knowledge, our method first builds a graph relation
transformation module to transfer the well-embedded language
relationships to the inferior visual space, thus the tangled visual
features can be reprojected in the correct space driven by the
strong language guidance.

Recent trends to predict object classes in CLIP-based mod-
els [2], [24], [25] is to calculate the similarity between text
and image embedding. Although this zero-shot trend provides
preferable generalization capabilities on new classes, it remains
a gap [26] compared to the performances using fully supervised
visual models. Combining the merits of supervised vision mod-
els and language-vision contrastive relations, we consolidate
text embedding of one category for prototypical representation
and then propose a text-vision prototypical fusion module to
incorporate representations from both visual and text domains.
In this way, the well-trained language embedding provides
strong backing for the standard visual representations, especially
in data-deficient few-shot scenarios. However, only finetuning
visual data would lead to a misalignment of visual and language
domains. Thus we first introduce a context text prompt learning
module to depict few-shot visual samples with learnable text
prompts instead of the hand-crafted ones in vanilla CLIP [2],
which fast mitigates the domain gap with only few incremental
samples.

Beyond these improvements in the knowledge transfer mod-
ule, we also notice that the multi-modality contrastive training
would be easy to overfit on specific data domains. It is because
although the image visual data are various and sufficient, its
corresponding language descriptions (i.e., label texts in our ap-
proach) are monotonous. Thus to solve this brand new problem,
for the multimodal alignment, we randomly mix the input images
and also mix their text labels including the learnable prompt
tokens as a virtual class. Then the imagined contrastive learning
is conducted among these imagined prototypes and theoretically
N times (N is the number of classes) larger than the vanilla
text input space. With the collaboration of text-to-image relation
transfer and multi-modal alignment, our proposed LRT is able

to achieve a comprehensive understanding of one novel concept
without forgetting the old ones. Moreover, LRT does not rely
on any auxiliary networks (including the text encoder) during
the inference time, making the final model lightweight and
implementation-friendly. Experimental evidence demonstrates
that LRT outperforms the state-of-the models by 13.3% on
miniImageNet [27] and 7.3% on CIFAR-100 [28] benchmarks
in the final session.

In summary, our contribution is threefold: 1) We make an at-
tempt to solve the few-shot class-incremental learning with pre-
trained language understanding and propose a new Language-
inspired Relation Transfer (LRT) paradigm. 2) We propose a
graph relation transformation module to gradually transfer the
text knowledge into few-shot visual prototypes, and introduce
a text-vision prototypical fusion strategy for feature representa-
tion, which combines the merits of the visual embedding and
pretrained language guidance. 3) We propose a context text
prompt learning strategy to align the text and image domains
with few shots and an imagined contrastive learning strategy
to alleviate the insufficient text label spaces for generalization
representation.

The remainder of this paper is organized as follows:
Section II reviews related works and discusses the relations
among previous literature. Section III describes the proposed
language-inspired relation transfer approach. Qualitative and
quantitative experiments with detailed analyses are exhibited
in Sections IV and V finally concludes this paper.

II. RELATED WORK

Few-Shot Learning: Inspired by human recognition systems,
few-shot learning aims to distinguish conceptually new object
categories by inferring from base knowledge. Recent ideas to
solve this problem could be roughly divided into two trends:
model optimization [3], [4], [5], [29], [30], [31] and metric
learning manners [6], [7], [8], [32], [33], [34]. Optimization-
based methods focuses on the generalization ability by us-
ing meta-learning frameworks. For example, model-agonistic
meta-learning [30], [31] aims to learn the fast adaptation abil-
ity by learning from the direction of sampled task gradients.
While metric-learning-based methods focus on the distance
measurement of novel query samples and base knowledge rep-
resentations. Representative works focuses on the prototype
learning [6], local representations [35] and feature space repro-
jections [36].

Class-Incremental Learning: Class-Incremental Learning
(CIL) focuses on one specific direction of the field of continual
learning [37], which aims to learn from new classes without
forgetting the base knowledge. Prevailing research dedicated to
this task focuses on replaying the old memories [9], [10], [11],
[38], [39] and regularizing the feature space [14], [40], [41].
Representative methods in the first family including iCaRL [9],
CLEAR [11] and A-GEM [10] selectively retain the knowledge
from old samples and replay these samples or features when
learning the new classes. For example, iCaRL [9] aims to distill
the base knowledge when learning samples from new categories,
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which greatly alleviates catastrophic forgetting. While the sec-
ond family of methods [14], [40] tends to build regularized
feature space and Besides these with fixed model structures,
the other line of works proposes to solve this problem by
model ensemble [12] and iterative pruning [13]. This research
direction also shares common concerns with few-shot learning
to represent new classes. However, when tackling incremental
categories with very few samples, rehearsal or distillation-based
methods usually face severely catastrophic overfitting and fail
to represent the novel categories.

Few-Shot Class-Incremental Learning: As a newly proposed
realistic setting, Few-Shot Class-Incremental Learning (FSCIL)
proposed by [15] has attracted considerable attention. Inspired
by incremental learning methods, several research [16], [17]
propose to alleviate the forgetting of base classes by knowledge
distillation during few-shot learning. Zhao et al. [42] propose a
slow-fast updating framework to achieve a balanced trade-off
between the novel updating and old knowledge degradation.
As the base samples during incremental learning are infeasible,
prevailing methods [22], [23], [43], [44], [45] tend to find the
generalized representation during base sessions. For example,
Zhou et al. [45] propose to synthesize fake FSCIL tasks from the
base dataset with meta-learning strategies. Besides, other works
propose to resist the overfitting caused by insufficient training
samples by using graph models [18] or selected parameter ad-
justment [19], [20], [21]. Hersche et al. [21] design a semi-frozen
meta-learning framework with rewritable dynamically growing
memory. However, although the discovery abilities of novel
categories are improved, the frozen visual backbones still restrict
their representation abilities to extract sufficient visual cues.

Contrastive Vision-Language Model: Cross-modality pre-
training with self-supervised contrastive learning has been
widely adopted in various applications. Representative vision-
language models including CLIP [2], ALIGN [46] and Cy-
CLIP [47] have shown great success in zero-shot image recogni-
tion tasks. Inspired by these works, contrastive pretraining using
multi-view [48] or part-level supervision [24] has enlightened
many down-stream vision tasks, e.g., zero-shot object detection
and visual question answering. Moreover, several very recent
works focus on prompt engineering to make a fast adaptation
on target domains, including vision prompt [49] and language
prompt [25]. Although these aforementioned methods show ef-
fectiveness in zero-shot learning, as validated in [25], [26], there
is still a huge gap between supervised learning and CLIP-based
models. In addition, when jointly optimizing these models,
the base classes and novel categories show less distribution
gap which cannot be jointly optimized in the few-shot class-
incremental setting.

Discussions and Relations: Methods of few-shot learning
and class-incremental learning only focus on the single side
of the FSCIL problem. Prevailing few-shot class-incremental
learning methods achieve preferable performance by alleviating
the catastrophic overfitting of base sessions, while the novel
discovery capability is still restricted by the inferior represen-
tation features trained by limited samples. To overcome this
bottleneck, in this paper, we argue that one promising solution to
understanding few-shot objects with incremental ability is from

the generalized visual-language knowledge: 1) fast adapting the
generalized representation to downstream task-specific features,
2) excavating generalized language knowledge to guide the
learning of few-shot visual samples, and 3) maintaining the
text-image cross-modal alignment with only few samples.

III. APPROACH

A. Problem Formulations and Baselines

Few-Shot Class-Incremental Learning With Text: FSCIL fo-
cuses on the intersection of class-incremental learning and few-
shot learning problems, which aims to jointly recognize the in-
cremental classes and base classes with a sequential of given ses-
sions. An FSCIL model sequentially receives S training session
D1 . . .DS with sets of triplets. i.e., Ds = {(xs

i ,y
s
i , t

s
i )}
|Ds|
i=1 ,

where xs
i ∈ X s, (ys

i , t
s
i ) ∈ Cs × Es denotes the training im-

ages, one-hot labels, and text labels with class names respec-
tively. X , C and E are space notations for the visual, label, and
text domains. During the training of FSCIL, the base session
D1 contains sufficient training samples of base classes, and the
subsequent 2 ∼ S sessions are defined as typical N-way M-shot
few-shot learning problems. During the incremental session,
only samples in the current session are visible and label spaces do
not contain any overlap. Ci ∩ Cj = ∅, ∀i, j ∈ {1 . . . S}, i �= j,
and similarly we have Di ∩ Dj = ∅, E i ∩ Ej = ∅. With learn-
able parameters Θ, the overall learning objective is to minimize
the measurement ξ across all sessions:

argmin
Θ

ΣS
s=1Σ(x,y,t)∼Dsξ(fΘ(x; t),y), (1)

where ξ are usually set as cosine or Euclidean distances with
the one-hot class label y and the label text t for each class are
introduced as auxiliary input.

Visual Learning Baseline: One intuitive but effective visual
learning scheme recently [18], [23] is to use prototypical net-
works [6] both for base and incremental sessions. We denote
VB ,VI for visual encoders of base and incremental sessions
respectively. The prototypical networks rely on the slowly up-
dated or fixed visual encoder VB that is pretrained on base
sessions. During the incremental session, the weight of base
visual encoder is transferred to the incremental visual encoder
VI(·)← VB(·) (fixed or slightly tuned). The fully connected
layers for classifiers are replaced with feature prototypes, as
in Fig. 2(a). Thus the visual prototypes Vi across all classes
have the form:

Vi =
1

WH

∑
(x,y)∼D,y=Ci

WH∑
j=1

V{B,I}(xj ; Ci), (2)

whereW,H denote the width and height of feature maps respec-
tively. With the averaged prototypes of all classes {Vi}|C|i=1 ∈
R1×1×DV and the standard measurements ξ(x,V), visual mod-
els show strong capabilities in alleviating catastrophic forget-
ting. Nevertheless, they are easy to overfit on the limited few-shot
incremental data and cannot form the generalized embedding.
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Fig. 2. Illustrations of different learning paradigms. a) Prototypical FS-
CIL [18], [23]: using visual prototypes for incremental classes. b) Zero-shot
CLIP [2]: direct predicting probabilities after image-text contrastive learning.
c) Ours: transferring the pretrained text embedding to visual domains meanwhile
keeping domain alignment with context prompt and imagined contrastive loss.

B. Connecting Images With Texts in FSCIL

Language-Guided FSCIL Paradigm: Our main motif is to uti-
lize the pretrained knowledge in the text domain to facilitate the
learning of few-shot class incremental sessions. To achieve this,
we face two major dilemmas beyond the prevailing incremental
learning challenges, 1) visual representation scarcity of novel
concepts and 2) continual misalignment of multi-modalities
caused by imbalanced and downstream learning tasks. Toward
these dilemmas, our major pipeline can be simplified as two
major steps as in Fig. 4, i.e., transferring and aligning. For
the first dilemma, we advocate transferring the pretrained gen-
eralized language concept knowledge to the visual modality by
relational knowledge transfer module in Section III-C. Note that
this module is constructed for both the base and incremental
learning sessions. For the second misalignment dilemma, in
Section III-D, we propose the imagined aligning strategy for
the base pretraining session and context prompt adaptation only
for the incremental session, which jointly alleviate severely
misaligned text and visual modality during learning.

Zero-Shot Measurements With Texts: Contrastive pretraining
vision-language models including CLIP [2] and ALIGN [46],
have offered us a conceptually new solution to solve the
few-shot representation predicament. As in Fig. 2(b), taking
the advantages of rich language data, this contrastive learn-
ing trend shows significant generalization ability on extremely
few-shot image samples. Given a cluster of N text labels to
predict, i.e.,{(t,y)|y = Ci}Ni=1, the text encoder T (·) aligns the
text inputs and the image features of query x in the same space.
Hence the zero-shot prediction of each class Ci is presented as:

pi =
eξ(V(x),T (ti)

�)∑N
j=i e

ξ(V(x),T (tj)�)
, (3)

where ξ(x, t) = x · t/(||x||22||t||22) denotes the normalized co-
sine similarity with omitted scale factors for simplicity. How-
ever, this equation only measures the similarity of input images

with text prototypes, while omitting the similarity of input to
image prototypes.

C. Relational Knowledge Transfer

Although the CLIP-based models show strong generalization
capability on unseen categories, FSCIL faces a conceptually
different problem, i.e., sufficient visual samples of base classes
are available and few-shot incremental samples in the same vein.
Omitting these visual clues as well as the class-based proto-
types would lead to overfitting due to the target dataset being
small compared to the large pretraining domain. Besides, the
language-vision pretraining models show a clear performance
drop compared with the supervised learning, as demonstrated
in [2], [26]. Toward this end, we propose constructing two major
modules for knowledge transfer, i.e., the language-guided graph
relation transfer (Fig. 4(c)) and text-vision prototypical fusion
(Fig. 4(d)). These two modules are consistently constructed for
both the base pretraining session and the subsequent incremental
learning session.

Language-Guided Graph Relation Transfer: Inspired by the
prototypical learning, here we adopt the text encoding features
of the same class Ti = 1/K

∑
k T (tk), ∀yk = Ci as the text

prototypes to represent the features of class Ci, where K denotes
the number of text prompts. This embedding can be formed by
using class names or even incorporating the object context fea-
tures, e.g., “cardinals are usually in red color” in Fig. 1, which
can provide rich prior knowledge for object recognition, espe-
cially in few-shot scenarios. More importantly, the generated
text prototypes are naturally distributed in the same space as the
visual features and benefited from the contrastive multi-modal
pretraining. Considering Fig. 3, the most crucial challenge in
incremental sessions is that the new visual prototypes are en-
tangled with the base ones. We therefore decide to disentangle
these confused samples by introducing the relationship from
pretrained language domain. The pair-wise relationship of text
prototypes T (ti) ∈ R1×1×DT is:

Ai,j =
T (ti)� · T (tj)
‖T (ti)‖ ‖T (tj)‖

. (4)

We then construct a relationship transformation graph with
the visual prototypes as graph nodes, i.e., G = {V,A},V =

{V(x)}|C|i=1 and the C can denote base classes Cbase or
[Cbase, Cinc] during the incremental session. With the relation
adjacent matrix, the reprojected visual prototypes using graph
convolutional networks [50] in Fig. 3 is formally presented as:

U = ReLU
(
D̃−

1
2 ÃD̃−

1
2VWv

)
∈ R|C|×DV , (5)

where Wv ∈ RDV ×DV is the learnable graph weights. Here
we set the output dimensions of the text and visual fea-
tures are aligned DV = CT for subsequent fusion operations.
D̃ =

∑
j Ãi,j is the normalized diagonal matrix. Ã = A+ I ∈

R|C|×|C| denotes the text relationship with self-loop and I denotes
the identity matrix.

Text-Vision Prototypical Fusion: With the graph relation
transferring from text features, the updated visual prototypes
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Fig. 3. The proposed Language-inspired Relation Transfer (LRT) approach consists of two essential modules. 1) Relational knowledge transfer module first
transfers the text-wise relationship to the visual prototypes and a text-vision prototypical fusion module for knowledge fusion. 2) Image-Text alignment module
introduces context prompt learning for fast adaptation and proposes the imagined contrastive learning for multi-modal alignment in few-shot class incremental
learning.

U are reprojected in a topologically distinguishable space for
recognition. In this paper, we argue that text prototypes in
Fig. 2(b) and visual prototypes in a) are both beneficial for
FSCIL tasks, i.e., the text prototypes provide well-generalized
representations when there are insufficient training samples,
meanwhile, the visual prototypes provide clear visual clues when
supervised with sufficient training data. Unlike the predominant
image-text prediction methods [2], [25], our model in Fig. 2(c)
relies on the joint text-vision prototypes instead of the conven-
tional fc layers. Considering the alignment during contrastive
learning, we directly fuse the visual prototypes U ∈ R|C|×DV

andT ∈ R|C|×DT with a learnable weight τ . Hence for any query
image x, the joint similarity scores from (3) are updated as:

p̂i =
eτ ·ξ(V(x),T

�
i )+ξ(V(x),U�i )∑N

j=i e
τ ·ξ(V(x),T�j )+ξ(V(x),U�j )

. (6)

This operation can be theoretically replaced by other concatena-
tion or attention-based fusion strategies. Despite its simplicity,
we found it works well under different scenarios, which are dis-
cussed later. We use these fused text-vision prototypes for both
training and inference during base and incremental sessions.
Benefiting from this prototypical design, the text knowledge
can be taken as a part of visual encoders, and during inference
time, we only use the visual backbones without any additional
computation costs.

D. Aligning Text With Image in FSCIL

Vanilla contrastive learning adopts the handcrafted text
prompt, e.g., ’a photo of a [cls].’ to get language em-
bedding, which is aligned in the same space during the con-
trastive pretraining. However, during the downstream supervised
learning process on visual encoders, it accompanies a clear
domain gap between the text and vision embeddings. To solve

Fig. 4. The motivation and modules of the proposed LRT. Our proposed LRT is
composed of an aligning stage to conduct a multimodal alignment with few-shot
downstream data and a transferring stage to transfer the text knowledge to the
vision domain.

this, we propose to find the generalized alignment strategy when
only texts of labels (e.g., [cat]) are available for training.

We make two major improvements for this multimodal align-
ment in FSCIL: 1) during the incremental learning session, we
propose a context prompt learning method (Fig. 4(a)) for fast
adaptation of pretrained language knowledge on few-shot novel
classes; 2) during the base training session, we propose the
imagined contrastive learning (Fig. 4(b)) to alleviate the imbal-
ance of multi-modality data (i.e., sufficient visual training data
while insufficient text descriptions). Besides, we also propose
a space reservation in the base session to construct compact
base prototypes to “reserve” space for subsequent incremental
prototypes.

Imagined Contrastive Learning: The other aforementioned
challenge is caused by the insufficiency of text inputs compared
to image data. The contrastive learning in Fig. 5(a) is easy to
overfit on training data when only label text is available, e.g.,
N text phrases for N classes. To alleviate this phenomenon, we
introduce a contrastive loss conducted during imagined texts and
images in Fig. 5(b), which is composed of two steps. i) the text

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 20,2025 at 08:26:35 UTC from IEEE Xplore.  Restrictions apply. 



1094 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 47, NO. 2, FEBRUARY 2025

Fig. 5. Illustrations of different text-vision learning loss. (a) Class-wise con-
text prompt Learning. (b) Multi-modality imagined contrastive learning: two
images using mixing strategy [51] are aligned with their corresponding prompt
fusion texts.

prompts of two random classes are concatenated including the
learnable ones:

f(ti, tj) = [op
i ,clsi,o

s
i ,o

p
j ,clsj ,o

s
j ]. (7)

ii) two visual images are fused averaged using CutMix [51] or
other alternative intra-mixing methods:

m(xi,xj) = M · xi + (1−M) · xj , (8)

where M ∈ RH ′×W ′
denotes the sampled masks. We control

the mask proportions H ′×W ′

H×W of M are sampled from (0.4, 0.6)
to match the text concatenation while introducing randomness.
For two mixed samples i, j in batch B, the imagined contrastive
learning has the form:

Lim(B;o, θ)=−
∑
i,j

log
eξ(V(m(xi,xj);θ),T (f(ti,tj ;o)))∑

p,q∈B e
ξ(V(m(xi,xj);θ),T (f(tp,tq;o)))

.

(9)
While for each positive pairm(xi,xj) andf(ti, tj), the negative
samples are other mixtures with different p �= i, q �= j in the
same batch.

Learning With Space Reservation: Besides the aforemen-
tioned contrastive learning, here we introduce the auxiliary
margin-based cross-entropy LM-CE for space reservation for
incremental classes, which helps to project the classes into a
normalized hypersphere. Here we introduce the margin-based
softmax loss, e.g., ArcFace [52] to help the “space reservation”,
which alleviates the overfitting on base classes. This indicates
that the base classes would be distributed more compactly and
would not fulfill the overall manifold space, thus the reserved
space can be retained for representing the incremental classes.
To be specific, this margin loss has the following form:

LM-CE = − log
es cos (αyi

+m)

es cos (αyi
+m) +

∑N
j=1,j �=yi

es cos (αj)
, (10)

where we empirically set the scale s as 1 with m = 0.4 to
maintain the magnitude of loss constraints. The cosαj denotes
the cosine similarity between prototype p̂j and visual features
Uj .

Context Prompt for Fast Adaptation: During incremental
sessions in FSCIL, onlyM ≤ 5 samples can be used for training,
which makes the visual fine-tuning process a major obstacle.

Algorithm 1: Language-Inspired Relation Transfer (LRT).

Input: Base session dataset D1 = {(x1
i ,y

k
i , t

s
i )}
|D1|
i=1 .

Incremental session dataset D1 . . .DS .
Output: Visual encoder:V , text prompts:{oi}|C|i=1

1: Initialize Visual V(·) and Text encoder T (·) with CLIP
alignment.

� Base Session Pretraining
2: Random Init. text prompt f(ti) = [op

i ,clsi,o
s
i ]

3: Random Init. visual prototypes V
4: for ∀((x1

i ,y
k
i , t

1
i )) ∈ D1 do

5: Extract text features: Ti = T (f(ti)), i = 1 . . . |C1|
6: Calculate text relationship Ai,j by (4)
7: Update visual prototypes V as U in (5)
8: Fuse text-vision knowledge by (6) to obtain p̂
9: Optimize LCE(p̂,y) and LM-CE(p̂,y)

10: Construct mixed image x̂ by CutMix
m(xi,xj) = M · xi + (1−M) · xj

11: Construct mixed text prompt
f(ti, tj) = [op

i ,clsi,o
s
i ,o

p
j ,clsj ,o

s
j ]

12: Calculate imagined contrastive loss L(i,j)
im (·;o, θ) in

(10)
13: Conduct base session optimization Lbase in (12) with

fixed text encoder T
� Incremental Session Fast Adaptation

14: Transfer other learned weights and prompts to
incremental session.

15: Random Init. text prompt f(ti) = [op
i ,clsi,o

s
i ] for

new classes Cs
16: for ∀((xs

i ,y
k
i , t

s
i )) ∈ Ds do

17: Init. visual prototypes V by (2) using x
18: Extract text features: Ti = T (f(ti)), i = 1 . . . |Cs|
19: Conduct incremental session text-vision fast alignment

Linc = Lconp(·;o{p,s}) in (11)
20: return Optimized visual encoder V , text prompts
{oi}|C|i=1

To start from another view, as the joint prediction in (6) is
also determined by the text embeddings T = T (t), we propose
to construct class-wise learnable prompt instead of the hand-
crafted ones in CLIP. We empirically use prefix op and suffix
os learnable prompt for each class, which is accomplished as
a whole learnable sentence f(ti) = [op

i ,clsi,o
s
i ]. As in Fig.

2(c), during the incremental session, we now fix the visual and
text encoders and only learnable context prompts for each class
are fine-tuned to minimize the language-vision domain gap:

Lconp(·;o{p,s}) = Σ(x,y,t)∈Dsy log S(ξ(V(x), T (f(t;o)))),
(11)

where S denotes the SoftMax function with pre-learnt weight
τ . With the class-wise learnable prompt, few-shot samples can
be depicted with learnable sentences, and the domain gap of
unseen categories is fast mitigated.

Overall Training Scheme: The overall training follows the
few-shot class-incremental learning paradigm. 1) During the
base session, the visual prototypes are randomly initialized as
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TABLE I
CLASSIFICATION ACCURACY ON MINIIMAGENET DATASET FOR 5-WAY 5-SHOT INCREMENTAL LEARNING

classifiers and the learning objective is joint optimization of three
terms i.e., the cross-entropy LCE between the fused image-text
prediction and ground truth label, the space reservation con-
straints LM-CE, and the imagined contrastive learning Lim:

Lbase = LCE(p̂,y) + λmLM-CE(p̂,y) + λimLim(x, t). (12)

The relational knowledge transfer module in Section III-C is
consistent during the base and incremental sessions. These three
loss functions are jointly optimized during the base session
to construct a generalized text-to-image feature transferring
space. 2) While in the incremental learning session, we first
construct vision prototypes following (2) and then finetune the
Linc = Lconp(·;o{p,s}) to fast mitigate the domain gap among
text and vision while representing the visual samples with learn-
able text prompts. Note that we only conduct the prompt learning
Lconp during incremental sessions, alleviating the overfitting of
multi-modal feature space caused by extreme few-shot samples.
The detailed training algorithm is shown in Algorithm 1, which
adopts different training strategies during the base training
session and incremental training session. As there are only
a few visual samples for training, we only conduct the fast
adaptation with a few learnable text prompts of the current
training classes, while fixing the prompts of previously seen
sessions.

For inference time, we first use learned text prompts {oi}|C|i=1

to update text prototypes and thus drop the heavy text encoder for
inference, keeping other modules including knowledge transfer
module consistent with the training phase. The final prediction
is measured by fused text-vision prototypes in (6).

IV. EXPERIMENTS

A. Experimental Settings

Dataset and Evaluations: In this experiment, follow-
ing the splits in prevailing works [15], [18], [21], we
mainly conduct ablations on two widely-used benchmark
datasets, i.e., miniImageNet [27] and CIFAR-100 dataset [28].
miniImageNet [27] contains 100 different semantic classes,
which are divided into 60 base classes and 40 few-shot classes for

8 incremental sessions. In the base sessions, each class has 600
images with a resolution of 84× 84, while in the few-shot ses-
sion, only 5 images of each class are used for training. Besides,
we conduct experiments on the large-scale ImageNet100 [27]
dataset of over 128k images following [23] with the image
resolution of 224× 224. Similarly, ImageNet100 contains 100
different semantic classes, which are divided into 60 base classes
and 40 few-shot classes for 8 incremental sessions. Besides, the
CIFAR-100 dataset [28] is also divided into 60 base classes and
40 few-shot incremental classes, with the resolution of 32× 32.
The final evaluations are conducted on classes across all training
sessions.

Implementation Details: To conduct fair comparisons with
state-of-the-art works, we follow [18] to conduct the supervised
training with identical data augmentation strategies. We adopt
the lightweight ResNet-50 [1] model pretrained by CLIP [2]
to alleviate the additional parameters. The text prompt is set
as ‘a photo of a [cls].’ for fair comparisons with pre-
vailing works. Following [18], The model is trained with the
batch size of 128 with SGD for 100 epochs. The learning
rate starts at 0.01 for both miniImageNet [27] and CIFAR-
100 dataset [28] and decays at 40 and 70 epochs. The text
encoders are fixed across all the sessions, and the learnable
prompt length is set as 4. Balanced weights λm, λim are set
as 0.1 and 0.05 respectively. We resize the low-resolution im-
age (84× 84 ) to fit the positional encoding layer of CLIP
models.

B. Comparison With State-of-the-Art

Results on miniImageNet: In Table II, we first conduct exper-
iments on the widely-used challenging miniImageNet dataset
with state-of-the-art works, including several CIL methods [9],
[53] and FSCIL methods [15], [18], [19], [21], [54]. Pioneer
works [15] indicate learning with a naive finetuning strategy
in the first line would lead to catastrophic forgetting on base
sessions, while the CIL methods alleviate this difficulty by clear
improvements. To validate the effectiveness of our method,
we conduct a baseline finetuning only using the visual en-
coders (ResNet-CLIP) using the identical protocol (Base-V) with
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TABLE II
CLASSIFICATION ACCURACY ON CIFAR100 DATASET FOR 5-WAY 5-SHOT INCREMENTAL LEARNING

TABLE III
COMPARISONS ON IMAGENET100 DATASET FOR 5-WAY 5-SHOT INCREMENTAL LEARNING

prototypical learning of Fig. 2(a) in the incremental session,
which shows slightly higher performance than earlier models.
The zero-shot CLIP in Fig. 2(b) have a strong generalization
ability and do not need any training data. The last session’s
accuracy of zero-shot CLIP remains at high accuracy. With our
proposed Language-inspired Relation Transfer (LRT) model,
the performance of the last session is improved by 19.7%, and
also shows a clear margin i.e., 13.9% and 14.8% compared to
the state-of-the-art C-FSCIL [21] and FACT [23] methods.

Results on CIFAR100: Note that CIFAR-100 is a low-
resolution image recognition dataset and CLIP models face
difficulties in conducting zero-shot testing. The first session
shows about a 25% gap in accuracy and Base-V with fine-tuning
surpasses the zero-shot CLIP models by 18% in the average
accuracy. Similar to the performances on miniImageNet, our
model also shows a notable improvement on the CIFAR100
dataset. Existing models including CEC [18], FACT [23] with
fixed or slightly tuned encoders (Fig. 2(a)) shows a clear
performance improvement compared to the topological re-
adjusting ones [15]. As this prevailing trend shows a per-
formance bottleneck, our LRT steadily improves the perfor-
mances of baseline finetuning (Base-V) by nearly 18.0% and
surpasses the second best method [23] by 7.3% in the last
session.

Results on ImageNet100: To verify the performance on large-
scale datasets, we compare our proposed method with the source
code of state-of-the-art methods CEC [18], FACT [23] and adopt
the same augmentation from [23]. As in Table III FACT [23]
improves the base and incremental learning sessions by 0.9%,

while our proposed method (LRT) shows steady improvements
and surpasses FACT [23] by a clear margin of 5.49%, implying
the good potential of our model for large-scale datasets.

C. Performance Analysis

Ablations of Learning Paradigms: In Table IV, we conduct
detailed ablations of our proposed learning paradigms. The first
two lines show methods only using visual FineTuning (FT)
and text Prompt Tuning (PT) respectively, which show inferior
results on both base and incremental sessions. With the addition
of the knowledge fusion module in the third line, the model
shows a clear performance improvement, e.g., over 9.0% on the
last session of CIFAR compared to the Base-V. The fourth and
fifth line introduces the joint PT-visual tuning and the imagined
contrastive loss, which presents steady improvements on both
last session accuracy and average accuracy. The final line is our
full model which can still boost the performance by using graph
transformations (over 18% than visual baselines).

Effects of Text-Vision Relationship: We first conduct a visu-
alized ablations with the Imagined Contrastive Training Loss
of (12). In Fig. 6(a), we exhibit results that adopt the standard
cross entropy LCE(V) for only using vision prototypes, and (6)
and (12) denote the only image-text fusion and fusion with
imagined contrastive loss. The upper left diagonal shows the
last 10 base classes in the miniImageNet dataset, and the lower
shows the confusion matrices on 10 new classes. Comparing
Fig. 6(a) with (b), it can be found our proposed alignment
strategies greatly improve the learning of new classes without
forgetting the base knowledge.
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TABLE IV
ABLATION STUDIES ON MINIIMAGENET AND CIFAR100 BENCHMARKS

Fig. 6. Confusion matrices of different contrastive losses. The last 10 base
classes and the first 10 incremental classes on miniImageNet are zoomed in for
ablation comparisons.

TABLE V
PERFORMANCE ANALYSIS OF DIFFERENT TEXT-VISION (T→ I) METHODS

AND PROTOTYPICAL FUSION STRATEGIES ON MINIIMAGENET

Besides visualization of loss functions, the fusion strategies
are also important in our method, here we present several naive
implementations in Table V. The first line shows the baseline
visual fine-tuning model without the help of text information.
The Learnable denotes our fusion methods using (6) and the
Static denotes a fixed τ = 1. The Proto Add: denotes we directly
add two prototypes before measurement, i.e., ξ(x,V +T). With
the proposed graph module, the overall accuracy of base and
incremental sessions shows a clear improvement. The exper-
imental evidence shows the performance drops dramatically
without the proper fusion of text and vision embedding since
they are strongly aligned during the pretraining stage.

Effects of Context Prompt: Selecting the proper size of the
prompt length is one of the factors that affect the final per-
formance. We conduct hyper-parameter ablations by setting

Fig. 7. Accuracies of base and incremental sessions with different learnable
prompt lengths. Our method chooses prompt length #PT = 4 for the base and
incremental trade-off.

Fig. 8. Accuracy with different number of shots during incremental sessions
on miniImageNet dataset.

the prompt length (both prefix and suffix, #PT ) as 2,4 and 8
respectively. Fig. 7 shows that using more learnable prompts
can boost the incremental learning session with only a few given
samples, e.g., 39.3% versus 35.4%. Nevertheless, finetuning
more prompts will lead to the loss of base knowledge, e.g., 1.6%
when extending the prompt number from 2 to 4. To achieve a
good trade-off between the base and incremental sessions, we
chose the prompt length of 4 in all our experiments.

Incremental Learning With Fewer Shots: Besides the explo-
ration of common N-way 5-shot settings during incremental
learning. Here we exhibit the results on fewer shots in Fig. 8, i.e.,
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TABLE VI
PERFORMANCE ANALYSIS OF DIFFERENT INCREMENTAL SHOTS ON

MINIIMAGENET

Fig. 9. Ablations of different loss functions. Imagined: imagined contrastive
learning Lim. Space: space reservation loss LM-CE.

from 1-shot to 4-shots. Starting from the same base accuracy of
nearly 90%, the model with fewer shots performs a more notable
performance drop than ours with 5 training shots. Whilst it is
still acceptable (over 51% in Avg. Acc) compared to other earlier
methods. However, when considering the base accuracy and
incremental accuracy individually in Table VI, the performance
of incremental sessions drops significantly. With the decrease of
training shots, the accuracy on base sessions seems to retain the
pretrained representations in base sessions, which shows higher
performance (86.40% of 1-shot compared to 82.68% of 5-shots).
But the accuracy of incremental sessions drops dramatically.
This indicates that it is hard to align the visual concepts with
proper text descriptions with only one sample. In other words,
depicting objects with pretrained textual knowledge also needs
more visual cases to alleviate overfitting.

Effect of Loss Constraints: We conduct experiments on dif-
ferent gratitude of hyperparameters i.e., λim for Lim and λm for
LM-CE. The experimental results can be found in Table VIII.
Enlarging or reducing the balanced weight would lead to a clear
performance drop of 1.8% to 4.05%. Besides, only scaling up
the LM-CE constraints would lead to a clear base session drop,
while other imagined contrastive learning and space reservation
constraints mainly affect the ability to learn new concepts. The
detailed ablations of Lim and LM-CE in (12) is presented in
Fig. 9. With the collaborative learning of these loss func-
tions, the capability to learn novel concepts has been greatly
enhanced.

Fig. 10. Accuracies of base and the average of our methods and extensions
on Wiki data [56]. Using Wiki data helps the fast understanding of incremental
sessions in b), while leading to performance drops on the base sessions in a).

Understanding Objects From Wiki: One ideal scenario for
understanding novel concepts is learning from descriptions from
sufficient web data, which contains rich descriptions like “The
northern cardinal has a distinctive crest on the head...”. To
achieve this, we collect the first 5 sentences from the Wikipedia
articles corresponding to ImageNet categories provided by [56].
With this prior knowledge, we fuse the wiki data and our prompt
with a ratio of (8 : 2) with other settings identical. Fig. 10
exhibits the results using wiki data (blue dotted line) and our final
model (red line). It can be found that the wiki data do provide
rich knowledge for incremental classes (e.g., over 8% in session
2) with few learnable samples as in Fig. 10(b). However, as
prompt learning takes a less important place during this learning,
the base classes are less discriminative with the incremental
sessions, which leads to clear drops during the base sessions
in Fig. 10(a). We would like to leave this extension in our future
work by incorporating advanced prompt fusion strategies when
more text data are available.

D. Discussions

How Does LRT Help FSCIL? As aforementioned, the major
challenge in few-shot class-incremental learning is to alleviate
the forgetting of base classes while recognizing novel incre-
mental classes. Some recent research [44] indicates that main-
taining the base session performance but inferior incremental
session performance would also lead to higher results, which
are caused by the imbalanced number of classes in base and
incremental sessions. Here we conduct detailed comparisons
with two state-of-the-art methods i.e., CEC [18] and FACT [23]
in Table IX. The Base Acc. denotes the averaged base class
accuracy after the final incremental session, and similarly, we
define the Inc. Acc. for all incremental classes. We then calcu-
late the harmonic average accuracy (Har. Acc.) of incremental
and base accuracy. Our proposed method achieves over 22%
improvements in the incremental accuracy on miniImageNet
dataset. Moreover, increasing the length of text prompts (from
2PT to 4PT) leads to a slight performance drop (1.6%) on
base classes, while boosting the incremental accuracy for
over 3.9%.

Besides the comparison with recent methods, the other natural
concern is: why our proposed LRT improves the representation
of incremental knowledge? Keeping this in mind, we conduct
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TABLE VII
KNOWLEDGE TRANSFER VERIFICATION ON MINIIMAGENET BENCHMARKS

TABLE VIII
PERFORMANCE ANALYSIS OF BALANCED WEIGHTS λM AND λIM IN (12)

TABLE IX
DIFFERENT MEASUREMENT COMPARISONS ON PUBLIC BENCHMARKS

ablations to verify how the knowledge transfer improves the
learning of incremental sessions, as in Table VII. The results
indicate that our proposed imagined image-text contrastive loss
greatly improves the alignment of text and image domains and
thus improves the incremental accuracy, i.e., from 10.15% to
24.55%. With our proposed graph module Mgraph in the last
line, the incremental accuracy can be improved to 39.32%, which
results in a performance margin compared to the prevailing
works.

Do the Performance Improvements Mainly Benefited From the
CLIP Pretraining? There is no doubt that our proposed model
benefits from the language-vision pretraining [2], which could
lead to a performance boost even with the naive training scheme.
We thus conduct detailed comparisons with the standard baseline
and our base models (Base-V). The standard training baseline
is modified from the decoupled prototype learning in [18].
The major difference between these two training procedures
is the multi-modality pretraining by CLIP [2]. As in Table
X, the pretrained CLIP model provides a performance gain
in both base session and incremental session with an average
of 4% on the miniImageNet dataset. The CEC models surpass
the baseline visual tuning models with an average of over
1.85% and FACT achieves an average accuracy of 70.97%.
Under different circumstances, our proposed LRT is able to

achieve steady improvements on both base and incremental
sessions by a clear margin, which indicates our performance
improvements do not mainly come from the strong pretraining
models but develop the potential of multimodal knowledge
transfer.

Can Models Learn From Long-Term Incremental Sessions?
We conduct detailed experimental comparisons with CEC [18]
and FACT [23] with the replaced CLIP backbones in Table
XI. We split the miniImageNet dataset into two parts (base
session for 60 classes and incremental session for the rest 40
classes). The incremental stage consists of 20 sessions, where
each session has 2 classes × 5 samples. The parameters of the
network are fixed in CEC and FACT during the incremental
session, which makes these methods show less forgetting in the
long-term incremental learning but limits their crucial ability
to learn novel concepts. Even under this setting, our proposed
LRT still shows preferable performance improvements, i.e.,
12.54% compared to CEC [18]. This is mainly because the
incremental relationship is pre-learned in the textual encoders
of CLIP models, and during the incremental sessions, its rela-
tionship is basically stable and does not suffer from catastrophic
forgetting.

How Does Text Knowledge Help the Joint Embedding? The
crucial idea of our multi-modal learning paradigm is to transfer
the text domain knowledge to the image domains. Here we
visualize the t-SNE results of the final prediction scores on
miniImageNet dataset. To present clear results, we only select the
last 5 base classes (54∼59) and the first 5 incremental classes
(60∼64) in the same space. We select the first 10 images of
each class in Fig. 11. With the only learnable visual prototypes
in Fig. 11(a), although the base classes can be distinguished
before the incremental stages after continuous learning the
incremental classes are entangled with the base classes in the
feature embedding. While in Fig. 11(b), measurements using
the text features show a clear distribution with little confusion.
By using the joint measurement of text and image prototypes,
final results in Fig. 11(c) show clear decision boundaries of each
class clusters.

E. Limitations and Future Works

As the text domain also retains rich knowledge for under-
standing the object, simply using text prompts with few-shot
visual samples still leads to insufficient representations, i.e.,
about 40% accuracy with 5-shot learning on miniImageNet.
It is caused by that only the class token [CLS] is used for
multi-modal alignment. Other methods [2] indicate that using
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TABLE X
COMPARISONS OF STANDARD TRAINING AND FINETUNING WITH CLIP VISUAL BACKBONES ON MINIIMAGENET DATASET FOR 5-WAY 5-SHOT INCREMENTAL

LEARNING

Fig. 11. T-SNE visualizations of prediction scores on miniImageNet dataset. (a) Measurement only using visual prototypes. (b) Measurement only using text
prototypes. (c) Our proposed joint fusion strategy with text-image measurements.

TABLE XI
LONG-TERM INCREMENTAL LEARNING (21 SESSIONS) ON ON MINIIMAGENET

FOR 5-WAY 5-SHOT CLASSIFICATION

rich hand-crafted prompts may lead to higher performances,
including “a good photo of [CLS]”. Besides, compared to the
visual representations with sufficient training samples, using text
embedding as prototypes also lead to performance bottleneck,
which might be caused by the insufficient description of local
visual patterns.

One possible solution to solve this limitation is to design
a dynamic bi-directional learning strategy for visual and text
representations. When sufficient training samples are available
(e.g., ImageNet), there should be also a re-adjustment of text
embedding. In other words, we have only explored the data flow
from T→ I in this work, while the I→ T relations are not
fully discovered, which is also a promising direction for many
downstream tasks.

V. CONCLUSION

In this paper, we make attempts to explore the few-shot
class-incremental learning problem from a novel perspective
by introducing generalized pertaining language knowledge as
learning guidance. To achieve this, our approach proposes a

new language-guided relation transfer module and a text-vision
prototypical fusion module for joint text-vision representations.
Beyond that, to align text with image data in FSCIL, we intro-
duce context prompt learning for fast adaptation during training
and an imagined contrastive loss to alleviate the data insuf-
ficiency during multi-modal alignment. Experimental results
demonstrate that our proposed method surpasses the conven-
tional single-modal methods by a large margin on benchmark
datasets.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[2] A. Radford et al., “Learning transferable visual models from natural lan-
guage supervision,” in Proc. Int. Conf. Mach. Learn., 2021, pp. 8748–8763.

[3] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-SGD: Learning to learn quickly
for few-shot learning,” 2017, arXiv: 1707.09835.

[4] D. Rezende et al., “One-shot generalization in deep generative models,”
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1521–1529.

[5] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in Proc. Int.
Conf. Mach. Learn., 2016, pp. 1842–1850.

[6] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 4080–4090.

[7] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to compare: Relation network for few-shot learning,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 1199–1208.

[8] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2016, pp. 3637–3645.

[9] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “iCaRL:
Incremental classifier and representation learning,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 2001–2010.

[10] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient
lifelong learning with A-GEM,” 2018, arXiv: 1812.00420.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 20,2025 at 08:26:35 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: LANGUAGE-INSPIRED RELATION TRANSFER FOR FEW-SHOT CLASS-INCREMENTAL LEARNING 1101

[11] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, “Experience
replay for continual learning,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2019, Art. no. 32.

[12] J. Zhang et al., “Class-incremental learning via deep model consolidation,”
in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., 2020, pp. 1131–1140.

[13] A. Mallya and S. Lazebnik, “PackNet: Adding multiple tasks to a single
network by iterative pruning,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 7765–7773.

[14] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–2947, Dec. 2018.

[15] X. Tao, X. Hong, X. Chang, S. Dong, X. Wei, and Y. Gong, “Few-shot
class-incremental learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pat-
tern Recognit., 2020, pp. 12 183–12 192.

[16] A. Cheraghian, S. Rahman, P. Fang, S. K. Roy, L. Petersson, and
M. Harandi, “Semantic-aware knowledge distillation for few-shot class-
incremental learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2021, pp. 2534–2543.

[17] S. Dong, X. Hong, X. Tao, X. Chang, X. Wei, and Y. Gong, “Few-shot
class-incremental learning via relation knowledge distillation,” in Proc.
AAAI Conf. Artif. Intell., 2021, pp. 1255–1263.

[18] C. Zhang, N. Song, G. Lin, Y. Zheng, P. Pan, and Y. Xu, “Few-shot
incremental learning with continually evolved classifiers,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2021, pp. 12 455–12 464.

[19] P. Mazumder, P. Singh, and P. Rai, “Few-shot lifelong learning,” in Proc.
AAAI Conf. Artif. Intell., 2021, pp. 2337–2345.

[20] K. Chen and C.-G. Lee, “Incremental few-shot learning via vector quan-
tization in deep embedded space,” in Proc. Int. Conf. Learn. Representa-
tions, 2020.

[21] M. Hersche, G. Karunaratne, G. Cherubini, L. Benini, A. Sebas-
tian, and A. Rahimi, “Constrained few-shot class-incremental learn-
ing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2022,
pp. 9057–9067.

[22] G. Shi, J. Chen, W. Zhang, L.-M. Zhan, and X.-M. Wu, “Overcom-
ing catastrophic forgetting in incremental few-shot learning by find-
ing flat minima,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2021,
pp. 6747–6761.

[23] D.-W. Zhou, F.-Y. Wang, H.-J. Ye, L. Ma, S. Pu, and D.-C. Zhan, “Forward
compatible few-shot class-incremental learning,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2022, pp. 9046–9056.

[24] L. H. Li et al., “Grounded language-image pre-training,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2022, pp. 10 965–10 975.

[25] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Learning to prompt for vision-
language models,” Int. J. Comput. Vis., vol. 130, no. 9, pp. 2337–2348,
2022.

[26] M. Wortsman et al., “Robust fine-tuning of zero-shot models,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2022, pp. 7959–7971.

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 248–255.

[28] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Master’s thesis, Univ. Tront, 2009.

[29] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,”
in Proc. Int. Conf. Learn. Representations, 2017.

[30] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 1126–1135.

[31] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” 2018, arXiv: 1803.02999.

[32] E. Triantafillou, R. S. Zemel, and R. Urtasun, “Few-shot learning through
an information retrieval lens,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2017, pp. 2255–2265.

[33] M. Ren et al., “Meta-learning for semi-supervised few-shot classification,”
in Proc. Int. Conf. Learn. Representations, 2018.

[34] B. N. Oreshkin, P. Rodriguez, and A. Lacoste, “TADAM: Task dependent
adaptive metric for improved few-shot learning,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2018, pp. 719–729.

[35] D. Wertheimer, L. Tang, and B. Hariharan, “Few-shot classification with
feature map reconstruction networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2021, pp. 8012–8021.

[36] C. Zhang, Y. Cai, G. Lin, and C. Shen, “DeepEMD: Few-shot image
classification with differentiable Earth mover’s distance and structured
classifiers,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 12 203–12 213.

[37] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual
lifelong learning with neural networks: A review,” Neural Netw., vol. 113,
pp. 54–71, 2019.

[38] E. Belouadah and A. Popescu, “IL2M: Class incremental learning with
dual memory,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 583–592.

[39] X. Hu, K. Tang, C. Miao, X.-S. Hua, and H. Zhang, “Distilling causal effect
of data in class-incremental learning,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2021, pp. 3957–3966.

[40] X. Liu, M. Masana, L. Herranz, J. Van de Weijer, A. M. Lopez, and A. D.
Bagdanov, “Rotate your networks: Better weight consolidation and less
catastrophic forgetting,” in Proc. 24th Int. Conf. Pattern Recognit., 2018,
pp. 2262–2268.

[41] X. Tao, X. Chang, X. Hong, X. Wei, and Y. Gong, “Topology-preserving
class-incremental learning,” in Proc. Eur. Conf. Comput. Vis., Springer,
2020, pp. 254–270.

[42] H. Zhao, Y. Fu, M. Kang, Q. Tian, F. Wu, and X. Li, “MgSvF: Multi-
grained slow vs. fast framework for few-shot class-incremental learning,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 3, pp. 1576–1588,
Mar. 2024.

[43] Y. Zou, S. Zhang, Y. Li, and R. Li, “Margin-based few-shot class-
incremental learning with class-level overfitting mitigation,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2022, Art. no. 1977.

[44] C. Peng, K. Zhao, T. Wang, M. Li, and B. C. Lovell, “Few-shot class-
incremental learning from an open-set perspective,” in Proc. Eur. Conf.
Comput. Vis., Springer, 2022, pp. 382–397.

[45] D.-W. Zhou, H.-J. Ye, L. Ma, D. Xie, S. Pu, and D.-C. Zhan, “Few-shot
class-incremental learning by sampling multi-phase tasks,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 45, no. 11, pp. 12816–12831, Nov. 2023.

[46] C. Jia et al., “Scaling up visual and vision-language representation learning
with noisy text supervision,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 4904–4916.

[47] S. Goel, H. Bansal, S. Bhatia, R. Rossi, V. Vinay, and A. Grover, “CYCLIP:
Cyclic contrastive language-image pretraining,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2022, pp. 6704–6719.

[48] Y. Li et al., “Supervision exists everywhere: A data efficient contrastive
language-image pre-training paradigm,” in Proc. Int. Conf. Learn. Repre-
sentations, 2021.

[49] Z. Wang et al., “Learning to prompt for continual learning,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2022, pp. 139–149.

[50] M. Welling and T. N. Kipf, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations, 2016.

[51] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “CutMix:
Regularization strategy to train strong classifiers with localizable features,”
in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 6023–6032.

[52] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive angular
margin loss for deep face recognition,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 4690–4699.

[53] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Learning a unified
classifier incrementally via rebalancing,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 831–839.

[54] Z. Chi, L. Gu, H. Liu, Y. Wang, Y. Yu, and J. Tang, “MetaFSCIL: A
meta-learning approach for few-shot class incremental learning,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2022, pp. 14 166–14 175.

[55] B. Yang et al., “Dynamic support network for few-shot class incremen-
tal learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3,
pp. 2945–2951, Mar. 2023.

[56] S. Bujwid and J. Sullivan, “Large-scale zero-shot image classification from
rich and diverse textual descriptions,” in Proc. 3rd Workshop Beyond Vis.
Lang. Integrating Real-World Knowl., 2021, pp. 38–52.

Yifan Zhao (Member, IEEE) received the BE de-
gree from the Harbin Institute of Technology, in
2016, and the PhD degree from the School of Com-
puter Science and Engineering, Beihang University,
in 2021. He is currently an associated professor
with the School of Computer Science and Engineer-
ing, Beihang University, Beijing, China. He worked
as a Boya Postdoc researcher with the School of
Computer Science, Peking University. His research
interests include computer vision and image/video
understanding.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 20,2025 at 08:26:35 UTC from IEEE Xplore.  Restrictions apply. 



1102 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 47, NO. 2, FEBRUARY 2025

Jia Li (Senior Member, IEEE) received the BE de-
gree from Tsinghua University, in 2005, and the PhD
degree from the Institute of Computing Technology,
Chinese Academy of Sciences, in 2011. He is cur-
rently a full professor with the School of Computer
Science and Engineering, Beihang University, Bei-
jing, China. He is the author or coauthor of more than
100 technical articles in refereed journals and confer-
ences, such as IEEE Transactions on Pattern Analysis
and Machine Intelligence, International Journal of
Computer Vision, IEEE Transactions on Image Pro-

cessing, CVPR, and ICCV. His research interests include computer vision and
multimedia Big Data, especially the understanding and generation of visual
contents. He is supported by the Research Funds for Excellent Young Re-
searchers from National Nature Science Foundation of China since 2019. He
was also selected into the Beijing Nova Program (2017) and ever received the
Second-grade Science Award of Chinese Institute of Electronics (2018), two
Excellent Doctoral Thesis Award from Chinese Academy of Sciences (2012)
and the Beijing Municipal Education Commission (2012), and the First-Grade
Science-Technology Progress Award from Ministry of Education, China (2010).
He is an IET fellow, and a senior member of the ACM, CIE, and CCF.

Zeyin Song received the BE degree from Tianjin
University, China, in 2021. She is currently work-
ing toward the MS degree with the School of Elec-
tronic and Computer Engineering, Peking University,
China. Her research interests include continual learn-
ing and representation learning.

Yonghong Tian (Fellow, IEEE) is currently the
dean with the School of Electronics and Computer
Engineering, a Boya distinguished professor with
the School of Computer Science, Peking University,
China, and is also the deputy director of Artificial
Intelligence Research, PengCheng Laboratory, Shen-
zhen, China. His research interests include neuro-
morphic vision, distributed machine learning, and
multimedia Big Data. He is the author or coauthor of
more than 300 technical articles in refereed journals
and conferences. He was the recipient of the Chinese

National Science Foundation for Distinguished Young Scholars in 2018, two
National Science and Technology Awards, and three ministerial-level awards in
China, and obtained the 2015 EURASIP Best Paper Award for Journal on Image
and Video Processing, and the best paper award of IEEE BigMM 2018, and the
2022 IEEE SA Standards Medallion and SA Emerging Technology Award. He
is a senior member of the CIE and CCF, and a member of the ACM.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 20,2025 at 08:26:35 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


