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Abstract Cross-Domain Few-Shot Learning (CDFSL)

endeavors to transfer generalized knowledge from the

source domain to target domains using only a minimal

amount of training data, which faces a triplet of learn-

ing challenges in the meantime, i.e., semantic disjoint,

large domain discrepancy, and data scarcity. Different

from predominant CDFSL works focused on generalized

representations, we make novel attempts to construct

Intermediate Domain Proxies (IDP) with source

feature embeddings as the codebook and reconstruct the

target domain feature with this learned codebook. We

then conduct an empirical study to explore the intrin-

sic attributes from perspectives of visual styles and se-

mantic contents in intermediate domain proxies. Reap-

ing benefits from these attributes of intermediate do-

mains, we develop a fast domain alignment method to
use these proxies as learning guidance for target domain
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feature transformation. With the collaborative learn-

ing of intermediate domain reconstruction and target

feature transformation, our proposed model is able to

surpass the state-of-the-art models by a margin on 8

cross-domain few-shot learning benchmarks. Our code

and models will be publicly available.

Keywords Few-shot learning · Cross-domain ·
Intermediate domain reconstruction

1 Introduction

While current deep vision systems are undoubtedly suc-

cessful at image classification tasks (He et al. 2016; Si-

monyan and Zisserman 2014), their exceptional perfor-

mance heavily relies on the availability of large-scale la-

beled data. Although these large-scale datasets (Deng

et al. 2009) are making progress in facilitating networks

to reach higher performance, it is usually impractical

to gather such vast amounts of data when dealing with

a novel concept. This data scarcity problem has moti-

vated the research on Few-Shot Learning (FSL) (Fei-

Fei et al. 2006; Lake et al. 2015; Miller et al. 2000),

which aims to model generalized memories from suffi-

cient base training samples while tackling conceptually

novel categories during the inference stage.

Despite its substantial improvements in many ideal

tasks, few-shot learning approaches suffer from a de-

fault assumption: the base pre-training categories for

generalized knowledge and the few-shot novel categories

should distribute in one same domain. However, such

strong assumptions are not feasible in most real-world

systems, especially when exploring new concepts in-

cluding remote-sensing satellite images (Helber et al.

2019) and medical images (Rajpurkar et al. 2017). To

meet the gap in realistic usage, Cross-Domain Few-Shot
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Learning (CDFSL) is established when various levels

of domain distribution shifts exist between pre-trained

base classes and target novel classes. Pioneer studies

(Chen et al. 2019; Guo et al. 2020) have demonstrated

that predominant methods for FSL exhibit significant

performance degradation when applied to the challeng-

ing problem of CDFSL. The huge gap between source

and target domains impedes networks from extrapo-

lating the generalized knowledge learned from source

classes to target novel ones.

Recent approaches are devoted to learning a gener-

alized representation to tackle this challenging problem,

which generalizes the model from the source domain to

the target domain. Tseng et al. (2020) propose to aug-

ment the features with randomness by using the feature

transformation layer. Wang and Deng (2021a) augment

multiple tasks in an adversarial manner. In comparison,

Liang et al. (2021) introduce noisy distribution to en-

hance the network for learning robust image represen-

tations. Beyond these domain generalization methods,

other research efforts (Li et al. 2022a; Shirekar et al.

2023) focus on mitigating the domain gap from source

to target ones with the facilitation of few-shot sam-

ples, e.g., Phoo and Hariharan (2020) propose to adapt

the network to the target domain by performing self-

supervised learning on the target domain. Nevertheless,

this learning mechanism relies on the large additional

amount of unlabeled data on the target domain, which

is usually infeasible in certain practical scenarios.

One intuitive idea to address the CDFSL is to con-

duct few-shot learning with domain adaptation tech-

niques, e.g., MMD distance (Tzeng et al. 2014; Pan

et al. 2010) or adversarial training (Ganin et al. 2016;

Tzeng et al. 2017). However, different from the preva-

lent domain issues, the CDFSL tackles a triplet of learn-

ing challenges. 1) Semantic disjoint: the semantic la-

bel spaces of the source and target domains are mutu-

ally exclusive, which is commonly shared in typical do-

main adaptation problems. 2) Domain discrepancy

between domains can be extremely large, such as the

stark contrast between the visual characteristics of nat-

ural images (Deng et al. 2009) and X-ray images (Wang

et al. 2017). 3) Data scarcity: the N -way K-shot FSL

samples are substantially difficult to represent the tar-

get domain distributions. These triplet simultaneous

challenges in CDFSL lead to a clear failure when us-

ing prevalent domain alignment techniques.

Keeping these challenges in mind, in this paper, we

make an attempt to construct Intermediate Domain

Proxies, forming a shared latent space between the source

and target domains. Toward this end, we first form a

prototypical vector pool learned from the embedding of

source categories and select the representative vectors

to learn a mapping function from source to target fea-

tures, i.e., the dense source feature embedding serves

as a codebook to reconstruct features of each target

sample. We then transform the target samples with the

learned mapping functions to construct an intermedi-

ate domain, which inherently follows two basic prin-

ciples: 1) the intermediate domain shares the same se-

mantic content as the target domains; 2) the visual style

of intermediate domain achieves a good compromise be-

tween the source and target domains. Reaping bene-

fits from these principles, the reconstructed features of

the intermediate domain, namely proxies, exhibit fewer

inherent domain gaps than their source counterparts

while still retaining the visual cues of these sources.

Instead of the naive alignment of source and target

domains in prevailing works, we here use the interme-

diate domain proxies as the learning guidance to re-

adjust both low and high-order parameters in feature

normalization layers (e.g., Batch Normalization (Ioffe

and Szegedy 2015)). Hence under extreme data scarcity,

the network features can be fast aligned to the target

domains. In conclusion, these intermediate proxies con-

duct relaxed alignment constraints instead of the di-

rect alignment of target and source domains. During

the domain alignment phase, we propose a rapid fea-

ture transformation using these proxies without the re-

hearsal of source data, and during the inference phase,

our method does not rely on the constructed intermedi-

ate domains. This lightweight implementation indicates

the ”free-lunch” design of the proposed approach. The

main contributions of our work are three-fold:

1. We make attempts to construct Intermediate Do-

main Proxies (IDP) to solve the cross-domain few-

shot learning problems and analyze the intrinsic at-

tributes of these proxies from the perspective of vi-

sual styles and semantic content.

2. We develop a fast adaptation method to use inter-

mediate domain proxies as learning guidance for tar-

get domain feature transformations.

3. We propose a unified framework for intermediate

domain reconstruction and fast domain feature trans-

formation in CDFSL. Experimental evidence indi-

cates our proposed framework outperforms the state-

of-the-art methods by a large margin on 8 public

datasets.

The remainder of this paper is organized as follows:

Section 2 describes the related works of this research

and Section 3 presents an empirical study of the inter-

mediate domain. Section 4 describes the proposed in-

termediate domain proxies reconstruction approach for

the cross-domain few-shot learning problem. Qualita-
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tive and quantitative experimental results are reported

in Section 5. Section 6 finally concludes this paper.

2 Related Works

Few-shot Learning (FSL) aims to recognize novel

concepts with very few numbers images, which are roughly

categorized into two lines. The optimization-based ap-

proaches (Finn et al. 2017; Rusu et al. 2018; Vuorio

et al. 2019; Li et al. 2017; Nichol et al. 2018) try to find a

starting point for quickly optimizing the model. On the

other hand, metric-based approaches (Oreshkin et al.

2018; Snell et al. 2017; Sung et al. 2018; Vinyals et al.

2016; Xu et al. 2022a; Chen et al. 2022) tend to find a

task-independent embedding space that can be gener-

alized to the target category by designing metric func-

tions. To better capture detailed features of the image,

recent metric-based approaches (Zhang et al. 2020a;

Wertheimer et al. 2021; Ye et al. 2020) have focused

on dense measuring of the feature map, rather than

the global representation prototypes. Several methods

(Rizve et al. 2021; Gidaris et al. 2019; Wei et al. 2022;

Luo et al. 2021) set auxiliary tasks in the pre-training

phase to enhance the model’s generalization ability. Do-

ersch et al. (2020) utilize the attention scheme to trans-

fer the pretrained knowledge to few-shot learning. Nev-

ertheless, these methods do not consider the significant

differences between the source and target domains in

the CDFSL setting.

Domain Adaption methods (Tzeng et al. 2017;

Cui et al. 2020; Robey et al. 2021; Kang et al. 2018;

Zhang et al. 2019) align the source and target domains
to resolve domain shifts. These methods usually focus

on regularizing the feature similarity of source and tar-

get domains, thus confusing the backbone networks to

construct a unified representation for both domains.

Another line of methods (Gong et al. 2012; Gopalan

et al. 2013; Dai et al. 2021) propose reducing the do-

main alignment difficulty by designing intermediate do-

mains to connect the source and target domains. Unlike

these methods, the CDFSL task in this paper requires

solving massive target domain classification tasks si-

multaneously with access to only a tiny number of sam-

ples from the supporting dataset. Simply mitigating the

domain gaps would lead to severe overfitting on these

few-shot samples.

Cross-Domain Few-shot Learning (CDFSL) meth-

ods (Guo et al. 2020; Wang and Deng 2021a; Phoo and

Hariharan 2020; Liang et al. 2021) usually adopt the

framework of transfer learning, i.e., supervised learn-

ing using source domain data and then fine-tuning using

target domain samples. This simple pipeline has proven

superior to many SOTA FSL methods in CDFSL set-

tings (Chen et al. 2019; Guo et al. 2020). Apart from

these works, Li et al. (2022b) focus on cross-domain

domain generalization and fast adaptation to unseen

domains with network tuning techniques, which stands

at a different view from the conventional CDFSL learn-

ings. Besides, Xu et al. (2022b) propose a contrastive

learning scheme to distill the memorized knowledge from

source domains. Representative methods (Phoo and Har-

iharan 2020; Li et al. 2022a; Shirekar et al. 2023) suggest

enhancing cross-domain discrimination through either

pseudo-labeling for model distillation or GNN-based

message passing in the target domain. However, in these

works (Phoo and Hariharan 2020; Li et al. 2022a; Shirekar

et al. 2023), unlabeled target domain data are not al-

ways available in practical tasks, e.g., X-ray images.

Unlike these methods, we argue that in the fine-tuning

phase, the network only has access to the target do-

main data is not the most effective use of the knowl-

edge learned in the past due to catastrophic forgetting

(McCloskey and Cohen 1989; Kemker et al. 2018). In

contrast, in this paper, we propose to find a solution

that only uses few-shot target domain data and without

the rehearsal from the large-scale source domain data.

With this in mind, we propose to build intermediate

domain proxies instead of accessing additional source

or target data.

Discussions and Relations. The concept of in-

termediate domain is proposed in domain adaptation

and extended to many applications in previous studies,

including Gong et al. (2012); Gopalan et al. (2013); Dai

et al. (2021). However, these works require a huge de-

mand for training samples of the target domain, which

is unavailable for the few-shot scenarios. Thus we re-

sort to the closed-form feature reconstruction meth-

ods (Bertinetto et al. 2018; Wertheimer et al. 2021)

to build intermediate domains in the feature space us-

ing dense prototypical sources (Snell et al. 2017). By

leveraging the advantage of the intermediate domain

and feature reconstruction, the intermediate proxies are

generated as a bridge when there are extremely few-shot

available samples in target domains. Based on these

proxies, beyond the conventional feature space align-

ment, our approach conducts a fast domain adaptation

by normalization feature transformation techniques.

3 Intermediate Domain Reconstruction: An

Empirical Study

3.1 Motivations and Setup

Imagine we are drawing an object, we almost always

first draw the sketch of the object and then fill in the
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Fig. 1 Illustration of intermediate proxy reconstruction. a) Two representative sub-domains for reconstruction bases. b)
Reconstructed intermediate proxies using the sources in a).

color with various pigments and inks, finishing with

wash, canvas, or watercolor styles. Analogous to this

painting process, in CDFSL, we decouple the object

representation into semantic contents and visual styles.

Our motivation is to find an intermediate proxy domain

P that shares the same semantic features of samples

in the target domain T by using the base units in the

source domain S, forming the intermediate domain with

a remix of both domains.

Empirical Study. Toward this motivation, we start

from constructing the intermediate proxies with few vi-

sually similar images sampled from two “sub-Domains”

in the miniImageNet (Vinyals et al. 2016), i.e., i) Do-

main A: objects in jungle and meadow including birds,

dogs, and sloths; ii) Domain B: underwater objects such

as Jellyfish. We then take one exemplar image from Car

dataset (Krause et al. 2013) as the target “domain”,

which shows different contents that never appeared in

the source domain, shown in Fig. 1.

Construction of Intermediate Proxy Suppose

one domain as source domain S and the other as tar-

get domain T , we first extract feature bases {Ci}ni=1 ∈
Rn×d by network backbone fθ, where n denotes the

number of features and d denotes their dimensions. To

construct intermediate proxies, one intuitive method is

to reconstruct the feature maps of each target sample

using the elements in the source bases, serving as the

codebook. Hence the reconstructed feature map could

share both the source and target domain features, i.e.,

reconstructed bases are similar to source domain S and

reconstructed goals are similar to target domain T . In

this paper, we name this process as the Intermediate

Proxy Construction.

Let T ∈ Rr×d denote the target domain embeddings

required to be reconstructed. Following the Ridge Re-

gression (Wertheimer et al. 2021; Hoerl and Kennard

1970; Bertinetto et al. 2018), and Sparse Coding mecha-

nisms (Mairal et al. 2010), hence we need to find a map-

ping matrix W ∈ Rr×n to minimize the reconstruction

error
∑r

j=1 ||Tj −WC||22. To retain this reconstruction

as a convex process, we have the following Ridge regres-

sion form:

Ŵ = argmin
W

∥T−WC∥22 + λ ∥W∥22 . (1)

where λ is the hyper-parameter to balance the regular-

ization of ℓ2-norm. With this regularization, we hereby

use its closed-form solution as in (Bertinetto et al. 2018;

Wertheimer et al. 2021), which also prevents the low-

rank issues (n < r) in solving Eq. (1), i.e., making Ŵ

an invertible matrix:

P = ŴC = TC⊤(CC⊤ + λI)−1C. (2)

Here reconstructed intermediate proxies P ∈ Rr×d have

the same size as target domain features T.

3.2 Analyzing Styles and Semantics of Intermediate

Proxy

With the reconstructed intermediate proxies, here arise

two inherent questions.Q1: How does the choice of base

{Ci}ni=1 impact the domain reconstruction? and Q2:

What is the relationship of intermediate proxies with

the source/target domains?

To answer these two questions, here we conduct

two lines of reconstruction with quantitative and qual-

itative analyses. img −→ r.img denotes that we use
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Fig. 2 Quantitative evaluations of content and style differences among source domains S, target domains T , and intermediate
domain proxies P. The content distance is calculated by VGG perception and Style distance is calculated by Gram distance
using samples in mini-ImageNet (Detailed in Appendix A).

source images to learn mapping weights Ŵ on tar-

get images. And feat −→ r.feat denotes that we use

the feature reconstruction process as in Eqs. (1) and

(2). The feature extraction process with fθ uses the

pretrained ResNet-10 backbone and other implementa-

tion details could refer to Section 5.1 and Appendix A.

In Fig. 2, we calculate the content distance (VGG per-

ceptional scores (Simonyan and Zisserman 2014)) and

style variances (Gram distance (Gatys et al. 2015) of

among source S, target T and intermediate proxies P.

Here we draw three principles:

1. The Intermediate Proxy preserves the seman-

tic content of the target image. In Fig. 1, the

reconstructed images clearly shows the similar con-

tent i.e., the cars with the target domain images.

While the distance of content of (P, T ) is much more

closer than (S, T ).

2. The Intermediate Proxy reflects the source

domain style when using different bases. Com-

paring the domain A and B, the reconstructed im-

ages show green background when using jungle im-

ages while exhibiting blue backgrounds using un-

derwater images as bases.

3. The Intermediate Proxy shows fewer domain

shifts in content and style statistics than source

domains. Both the style and content shift in (P, T )

are much less than (S, T ) in Fig. 2, indicating align-

ing with intermediate domain proxies P → T would

be much easier than the direct alignment of source

and target ones S → T . Note that the distance to

target domains could be closer if more base vectors

are used for reconstruction.

3.3 The Role of Intermediate Proxy

Besides the intuitive visualization and experimental statis-

tics, here we provide detailed theoretical analyses of

why the intermediate proxies help cross-domain learn-

ing.

Definition 1 (Inter-domain discrepancy distance).

Inter-domain discrepancy distance between the source

domain S and target domain T is measured by the Eu-

clidean distance of their corresponding sample features:

discL(S, T ) =
∑

ij ∥Si − Tj∥2, with smaller discrep-

ancy distances indicating greater semantic similarity

between the domains.

Proposition 1 (High semantic similarity). By con-

trolling the ridge regression regular term λ , the seman-

tic similarity between the intermediary domain proxy

Pλ and the target domain T is larger than that between

the source domain S and the target domain T . Their

inter-domain discrepancy distance satisfies the follow-

ing relationship: ∃ λ ,s.t. discL(S, T ) > discL(P, T ).

The first proposition indicates that the intermediate

domain P shares more semantic similarity with the tar-

get domain T , thus aligning the intermediate domain is

much easier than the direct alignment of source and tar-

get domains. This proposition provides a compromised

solution when facing an extremely huge domain gap or

when there is rare data for aligning these domains.

Proposition 2 (Reducing target classification er-

ror). Aligning the target domain T to the intermediate

domain proxy Pλ can reduce the discrepancy distance

between the source and target domain discL(S, T ), which

in turn reduces the error of the classifier ϵT on the tar-

get domain.
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Fig. 3 Illustration of the proposed method. We first collect dense prototypes from source domains and use them to construct
the intermediate proxy pool. Features in this pool are then employed to reconstruct the target domain, forming intermediate
reconstructions. After that, the intermediate proxies are adopted as learning guidance for fast feature alignment of target and
intermediate domains.

Besides the first proposition, the other crucial issue

is that aligning the intermediate domain and target do-

main should in turn reduce the gap between the source

and target domains. Thus we could regard the interme-

diate domain as a substitution during the optimization.

Please refer to the Appendix for detailed proofs.

4 Approach

4.1 Dense Reconstruction for Cross-domain Few-shot

Learning

Problem Formulation. Given the source and target

domain Ds and Dt, the distribution N (·) of Ds and Dt

are in different semantic space, i.e., N (Ds) ≁ N (Dt).

The large-scale labeled images of base classes Cbase are

available in the source domain, i.e., Ds = {(xs
i ,y

s
i )}Li=1,

where L is the number of images in Ds. For N -way

K-shot problems, the target domain T includes two

parts: a support dataset T s = {(xts
i ,yts

i )}K×N
i=1 with

a few labeled samples and a unknown query dataset

T q = {(xtq
i ,ytq

i )}Mi=1 for inference. Here N,K denotes

the number of classes and images in each class in T s.

The label space of source domain Ds is disjoint from

target domain T , i.e., Cbase

⋂
Cnovel = ϕ. The opti-

mization objective follows the conventional FSL prob-

lems, which aim to learn a generalized embedding from

base classes and then transfer it to target domains with

few-shot data. The optimized parameters are typically

composed of two major components: 1) one backbone

network fθ to encode the images into dense feature

maps; 2) one classifier gV to predict probabilities for

each category. Thus we have

Lce(θ,V) = E(xo
i ,y

o
i )∼Do

[yi log(gV(Pool(fθ(x
o
i ))))],

o ∈ {s, t}.
(3)

Dense Reconstructions for CDFSL. The con-

ventional learning schemes in Eq. (3) construct classi-

fiers following a prototypical trend (Snell et al. 2017), i.e.,

V =
∑k

i=1

∑WH
j=1 (fθ(xi,j)) for given k samples and spa-

tial dimension j. W,H are the width and height of

the feature map. Although this learning scheme pro-

vides satisfactory feature embeddings in common FSL

problems, it still suffers two major challenges in cross-

domain learning: 1) the spatial information is severely

neglected by pooling operations, while for novel cat-

egories in the target domain, representing novel ob-

jects with only global prototypes are usually difficult;

2) global prototypes provides more domain-specific se-

mantics while losing generalization when serving as ma-

terials for reconstruction. Following the reconstruction

process in Eq. (1) and prevailing works (Bertinetto et al.

2018; Wertheimer et al. 2021), we here first reconstruct

the source domains with prototypes Vs without los-

ing its spatial dimension. This reconstruction measure-

ments RA→B(·) by using domain A to construct B also

follows a closed form solution with learnable Va:

RA→B(fθ(x
b);Va) =

exp(||WaVa
i − fθ(x

b)||2)∑N−1
j=0 exp (||WaVa

j − fθ(xb)||2)
,



Free Lunch to Meet the Gap: Intermediate Domain Reconstruction for Cross-Domain Few-Shot Learning 7

(4)

where Wa = fθ(x)V
a⊤

(VaVa⊤
+ λI)−1 denotes the

inter-domain mapping weights. a, b denotes the matri-

ces or vectors belonging to domains A and B respec-

tively. We thus form a reconstruction RS→S(·) by using

source domain bases to construct itself as pretraining to

get generalized embedding. After this pretraining stage

in only source domains, the densely formed visual pro-

totypes V can be constructed and the network param-

eters are initialized for subsequent cross-domain learn-

ing. Note that the reconstruction process for prototypes

mainly follows Wertheimer et al. (2021) to optimize the

few-shot process in a differentiable manner.

4.2 Intermediate Domain Construction

Intermediate Proxies Generation. Starting from

Eq. (4), we then have a densely formed visual proto-

types V ∈ RWH×D×Cbase , where Cbase, D denotes the

number of base classes and feature dimensions. The ma-

jor concern is what we asked in Q1 in Section 3, i.e.,

how to choose reconstructed materials for the inter-

mediate domain without additional costs? Using base

pooling prototypes RWH×D×Cbase with such high di-

mension for reconstruction would lead to huge compu-

tation costs and inferior optimization for the closed-

form equation in Eq. (1). Hence we use the K-means

algorithm to cluster the dense prototypes into spatial

feature pool U for intermediate domain construction P,

resulting in a cluster mapping M : RWH×D×Cbase →
RWH×D, as in Fig. 3. This clustering process also regu-

larizes different semantic classes with the unified recon-
struction materials. Different from prevailing FSL ef-

forts, the intermediate proxy pool U = {Ui}WH
i=1 depicts

a generalized representation of each visual pattern, thus

is inherent to reconstruct further novel categories with

large domain gaps.‘ By replacing the generalized learnt

U with C that only for specific samples, for each cate-

gory n ∈ [1, N ], we have

Pi = Ŵ
i
U = TiU⊤(UU⊤ + λI)−1U ∈ RKWH×D, (5)

where Ti indicates the ith class of the target domain

features. Eq. (5) means different classes in the novel set

share similar reconstruction materials from the proxy

pool U . We perform reconstruction for each category

independently to obtain its respective intermediate do-

main. This observation leads us to an interesting man-

ner to further tune these proxies and make them fully

adapted to target domains, i.e., the constructed proxy

Pi highly corresponds with the supported features Ti

for class Ci. Hence we use the standard cross entropy

to retain the reconstructed proxies in the target domain

semantic space with Cnovel = N categories:

Lproxy(θ) = E(xts
i ,yts

i )∼Dt
[yts

i log(RP→T (fθ(x),Pi))],

(6)

where RP→T denotes the reconstruction function from

proxies P to target domains T . Note that during this

process, the proxies are not learnable matrices and can

only be updated indirectly by the change of extracted

source prototypes V̌
s
, and then be re-mapped by {Ǔ}i =

M(V̌
s
).

4.3 Domain Alignment with Intermediate Proxies

After constructing intermediate proxies distributed be-

tween source and target domains, one intuitive idea is to

align target and intermediate domains (P, T ) instead of

the direct alignment of (S, T ). Beyond this considera-

tion, we observed that due to the extremely small size of

training samples, this compromised alignment by using

intermediate domains still leads to catastrophic overfit-

ting on very few target samples. To overcome this, here

we propose to transform the feature statistics beyond

tuning the whole network.

Decomposing Batch Normalization. Conven-

tional BN layers (Ioffe and Szegedy 2015) are typically

decomposed into two stages, statistic normalization and

affine transformations. Given an extracted feature map

F ∈ RB×H×W×D with the batch-wise dimension, the

mean and variances are calculated along the channel

size

µBN =
1

B ×H ×W

B∑
b=1

H×W∑
r=1

Fb,c,r, (7)

and the channel-wise variance is computed as

σ2
BN =

1

B ×H ×W

B∑
b=1

H×W∑
r=1

(Fb,c,r − µBN)
2. (8)

Thus the feature normalization in Eq. (9) indicates the

low-order statistics (Maria Carlucci et al. 2017; Wang

et al. 2019), which are mainly decided by the histori-

cal statistics and current running status. While Eq. (10)

forms a high-order affine transformation to adjust the

distribution shape with the scaling factor γ and shifting

factor β.

FBN =
F− µBN√
σ2
BN + ϵ

, (9)

Faff = γFBN + β. (10)



8 Tong Zhang et al.

Feature Transformation with Intermediate Do-

main Proxies. Dozens of research efforts (Li et al.

2016) have demonstrated the strong correlation between

visual styles and feature statistics and several pioneer

works (Zhang et al. 2020b) focus on the BN optimiza-

tion in domain adaptation problems. Inspired by these

early explorations, here we resort to the intermediate

proxies for the fast alignment of multiple domains. First,

the low-order statistics in the normalization layers are

updated by a static momentum, i.e., updating the same

ratio of samples during different training phases. Here

we argue to construct a dynamic momentum function

that is gradually increased during the training phase.

µ̃t = (1− Gα(t)) · µ̃t−1 + Gα(t) · µt, (11)

σ̃2
t = (1− Gα(t)) · σ̃2

t−1 + Gα(t) · σ2
t , (12)

where Gα(t) = 1/(1 + exp(−t/α)), α is used to control

the scale of weighting function. µ̃t, σ̃t denotes the up-

dated mean and variances for time step t. Thus in the

first training stages, the models tend to use more source

statistics for representation stability.

For high-order affine transformations, we resort to

aligning the target and intermediate domains by Kullback-

Leibler divergences. This alignment only works on the

learnable scaling factor γ and shifting factor β, fast

adapting the distribution to a proper shape, as in Fig.

3. We hence conduct this constraint on each target sup-

port samples xts and its corresponding intermediate

proxies with RP→T (·):

Lalign(·;β, γ) = DK−L(R(P,Vt)||R(fθ(x
ts;β, γ),Vt))

= R(fθ(x),V
t) logR(P,Vt)+

R(P,Vt) logR(fθ(x
ts;β, γ),Vt).

(13)

where Vt ∈ RWH×D×Cnovel denotes the target learn-

able prototypes.

4.4 Model Optimization

Learning Objective. Besides the pretraining stage

on source domains, the target domain learning objec-

tive is composed of three constraints: 1) semantic con-

straints for intermediate proxies Lproxy; 2) standard

cross-entropy loss for target domain finetuning Ltar with

RT →T (·):

Ltar(·; θ) = E(xts,yts)∼Dt
[yts log(R(fθ(x

ts),Vt))], (14)

where xts
i and yts

i denote the target domain support

set sample and its label respectively; 3) intermediate

Algorithm 1: Cross-domain Few-shot Learn-

ing with Intermediate Domain Proxies (IDP)

Input: Source domain data S, target domain
support set T s, target domain query set T q.

Output: Backbone network fθ, Classifier gV ,
Predicted results S.

1 Init. parameters of the backbone network θ in Fθ(·)
with random norm;

// Source Domain Pretraining

2 Random Init. source domain densely formed visual

prototypes: Vs ∈ RWH×D×Cbase ;
3 for ∀(xs,ys) ∈ S do
4 Calculate inter-domain mapping weights

Ws = fθ(x)Vs⊤
(VsVs⊤

+ λI)−1;
5 Calculate reconstruction measurements

RS→S(fθ(x);Vs) by Eq. 4;
6 Calculate cross-entropy loss Lce by Eq. 3 and

optimizing θ,V = argminθ,V Lce ;

7 end
// Target Domain Finetuning

8 Init. parameters of the backbone network θ in Fθ(·)
with pre-training;

9 for fine-tining time step t and ∀(xts,yts) ∈ T s do
10 Calculate cross-entropy loss for target domain

finetuning Ltar;
11 Cluster the dense prototypes Vs into spatial

feature pool U ;
12 Reconstruct intermediate proxies Pi using

generalized learnt U by Eq. 5;
13 Calculate cross-entropy loss for reconstructed

proxies Lproxy by Eq. 6;
14 Update low-order statistics µ̃t, σ̃2

t by Eq. 11 and
Eq. 12;

15 Calculate reconstruction measurements
RP→T (P;Vt) by Eq. 4;

16 Calculate intermediate proxies constraint loss
Lalign by Eq. 13;

17 Gather total loss Lsum by Eq. 15 and optimizing
θ, γ, β = argminθ,γ,β Lsum ;

18 end
// Target Domain Querying

19 for ∀(xtq,ytq) ∈ T q do
20 Calculate reconstruction measurements

RT →T (fθ(xtq);Vt) by Eq. 4;
21 Predicting the probability of each category S

using RT →T ;

22 end
23 return Predicted results S of N classes

alignment loss for feature transformations Lalign. The

overall learning objective has the form:

Lsum = wtLtar(·; θ)+wpLproxy(·; θ)+waLalign(·; γ, β).
(15)

We empirically set balanced weights wt,p,a as 1, which

already shows satisfactory performance despite its sim-

plicity. Note that in the evaluation phase, we do not rely

on the intermediate proxies and only use the backbone

networks fθ with target domain prototypes Vt using

measurements in Eq. (4). Besides, following previous
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Table 1 Comparisons with state-of-the-art models on CDFSL benchmark dataset. The first and second best values on each
dataset are highlighted in bold and underlined. ∗: Finetuning using the same optimization as Ours. †: re-trained using ResNet-
12 as backbone, others using ResNet-10.

1-shot ISIC EuroSAT CropDisease ChestX Car CUB Plantae Places

GNN (Garcia and Bruna 2018) 32.02±0.66 63.69±1.03 64.48±1.08 22.00±0.46 31.79±0.51 45.69±0.68 35.60±0.56 53.10±0.80

FWT (Tseng et al. 2020) 31.58±0.67 62.36±1.05 66.36±1.04 22.04±0.44 31.61±0.53 47.47±0.75 35.95±0.58 55.77±0.79

LRP (Sun et al. 2021) 30.94±0.30 54.99±0.50 59.23±0.50 22.11±0.20 32.78±0.39 48.29±0.51 37.49±0.43 54.83±0.56

AFA (Hu and Ma 2022) 33.21±0.30 63.12±0.50 67.61±0.50 22.92±0.20 34.25±0.40 46.86±0.50 36.76±0.40 54.04±0.60

STARTUP (Phoo and Hariharan 2020) 32.66±0.60 63.88±0.84 75.93±0.80 23.09±0.43 - - - -

TPN-ATA (Wang and Deng 2021a) 33.21±0.40 61.35±0.50 67.47±0.50 22.10±0.20 33.61±0.40 45.00±0.50 34.42±0.40 53.57±0.50

FRN† (Wertheimer et al. 2021) 33.73±0.62 63.80±0.91 71.93±0.85 22.52±0.40 32.37±0.58 51.76±0.80 42.37±0.73 56.92±0.84

FRN∗† (Wertheimer et al. 2021) 33.38±0.58 60.25±0.81 70.09±0.82 22.53±0.38 33.08±0.57 44.95±0.74 36.45±0.65 50.84±0.75

ConFT (Das et al. 2021) 34.47±0.60 64.79±0.80 69.71±0.90 23.31±0.4 39.11±0.77 45.57±0.76 43.09±0.78 49.97±0.86

KT (Li et al. 2023) 34.06±0.77 66.43±0.93 73.10±0.87 22.68±0.60 - - - -

IDP (Ours) 35.94±0.53 71.60±0.67 83.85±0.60 23.11±0.33 38.46±0.53 49.70±0.61 44.39±0.61 54.07±0.63

5-shot ISIC EuroSAT CropDisease ChestX Car CUB Plantae Places

GNN (Garcia and Bruna 2018) 43.94±0.67 83.64±0.77 87.96±0.67 25.27±0.46 44.28±0.63 62.25±0.65 52.53±0.59 70.84±0.65

FWT (Tseng et al. 2020) 43.17±0.70 83.01±0.79 87.11±0.67 25.18±0.45 44.90±0.64 66.98±0.68 53.85±0.62 73.94±0.67

LRP (Sun et al. 2021) 44.14±0.40 77.14±0.40 86.15±0.40 24.53±0.30 46.20±0.46 64.44±0.48 54.46±0.46 74.45±0.47

AFA (Hu and Ma 2022) 46.01±0.40 85.58±0.40 88.06±0.30 25.02±0.20 49.28±0.50 68.25±0.50 54.26±0.40 76.21±0.50

FT-All (Guo et al. 2020) 48.11±0.64 79.08±0.61 89.25±0.51 25.97±0.41 52.08±0.74 64.14±0.77 59.27±0.70 70.06±0.74

STARTUP (Phoo and Hariharan 2020) 47.22±0.61 82.29±0.60 93.02±0.45 26.94±0.94 - - - -

FRN† (Wertheimer et al. 2021) 47.41±0.59 80.77±0.60 91.93±0.46 26.77±0.40 49.78±0.68 73.06±0.72 61.04±0.74 73.65±0.71

FRN∗† (Wertheimer et al. 2021) 47.17±0.58 80.52±0.62 90.68±0.47 25.18±0.41 50.92±0.70 67.29±0.71 56.07±0.73 69.71±0.69

ATA-FT (Wang and Deng 2021a) 49.79±0.40 89.64±0.30 95.44±0.20 25.08±0.20 54.28±0.50 69.83±0.50 58.08±0.40 76.64±0.40

NSAE (Liang et al. 2021) 54.05±0.63 83.96±0.57 93.14±0.47 27.10±0.44 54.91±0.74 68.51±0.76 59.55±0.74 71.02±0.72

BSR (Liu et al. 2020) 54.42±0.66 80.89±0.61 92.17±0.45 26.84±0.44 57.49±0.72 69.38±0.76 61.07±0.76 71.09±0.68

ConFT (Das et al. 2021) 50.79±0.60 81.52±0.60 90.90±0.60 27.50±0.50 61.53±0.75 70.53±0.75 62.54±0.76 72.09±0.68

ConFeSS (Das et al. 2022) 48.85±0.29 84.65±0.38 88.88±0.51 27.09±0.24 - - - -

KT (Li et al. 2023) 46.37±0.77 82.53±0.66 89.53±0.58 26.79±0.61 - - - -

IDP (Ours) 53.36±0.50 91.08±0.41 96.89±0.28 26.87±0.34 62.76±0.56 72.92±0.58 69.10±0.56 78.08±0.55

cross-domain few-shot learning methods (Tseng et al.

2020; Wang and Deng 2021b; Hu and Ma 2022), we also

incorporate the GNN model (Garcia and Bruna 2018)

as our classifiers. GNN learns the joint relationship of

support and query samples to predict the probability

of each sample belonging to each class S based on the

target domain reconstruction metric R(fθ(x);V
t).

Alg. 1 shows the training and inference details of

the proposed approach. We divide the whole learning

scheme into three stages. 1) We first pre-train our model

on an annotated source domain dataset, such as mini -

ImageNet (Vinyals et al. 2016), using each pair of data

(xs,ys). 2) we fine-tuned our model using the support

set of the target domain (xts,yts) to adapt it to the tar-

get domain gradually. 3) we use the optimized model

to classify the samples of the target domain query set

xtq,ytq. In this manner, our training scheme shows two

distinctive advantages compared to vanilla implementa-

tions: i) our approach does not rely on additional target

domain unlabeled data or source domain data; ii) Our

final inference network is lightweight and does not rely

on additional constructed intermediate domains. These

two advantages indicate our “free lunch” implementa-

tion without any data or computation burden during

the domain alignment process.

Discussions. The key challenge for cross-domain

few-shot learning is the data scarcity and huge domain

gap. Our proposed IDP benefits from two major points

to solve this challenge.

1. Intermediate domains to reconstruct target domain

content: Our approach does not directly utilize the

source domain features and align this feature to the

target domain, which is typically applied in the pre-

vious domain adaptation works (Robey et al. 2021;

Kang et al. 2018; Zhang et al. 2019). Instead, our

approach reconstructs the source domain features

through an intermediate proxy, which still leans to-

wards the target domain in terms of content. Addi-

tionally, our method allows effective control of the

influence of the source domain on the intermediate

domain by adjusting the source domain feature pool
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sizes, thereby suppressing the risk of the model over-

fitting during the adaptation.

2. Optimizing normalization statistics other than CNN

weights: Direct aligning with the intermediate do-

main might also lead to overfitting when there are

only extremely few samples used for training. Thus

we proposed to optimize the feature transforma-

tion statistics, i.e., high-order and low-order statis-

tics in the normalization layers, instead of the di-

rect optimization on holistic network parameters.

In this manner, the feature distribution can be glob-

ally transformed to align with the intermediate do-

main and the relative semantic relationships of the

pretrained features from the source domains can

be maintained, leading to the fast global alignment

with extremely limited data.

5 Experiments

5.1 Experiment Setting

Datasets. Following the benchmark setting in CDFSL,

we use the miniImageNet (Vinyals et al. 2016) training

set as the source domain. Mini-ImageNet is a subset of

ILSVRC-2012 (Deng et al. 2009), and its training set

part has 64 classes, each containing 100 natural images

collected from the Internet. In addition, we use eight

target domain datasets to respond to real scenarios.

For diverse levels of cross-domain learning, we follow

BSCD-FSL (Guo et al. 2020) which includes CropDis-

ease, EuroSAT, ISIC, and ChestX datasets. For natural

images in other CDFSL methods, we follow the dataset

split of Tseng et al. (2020), which includes Car (Krause

et al. 2013), CUB (Wah et al. 2011), Plantae (Van Horn

et al. 2018) and Places (Zhou et al. 2017) datasets.

Evaluation Protocol. To make fair comparisons,

we follow benchmark protocol (Guo et al. 2020), which

involves validating the performance of the classifiers by

simulating 600 independent 5-way k-shot tasks in the

target domain. Since large shots can be easily learned

by supervised learning, we conduct experiments with

k ∈ {1, 5}. For each task, we randomly select 5 cate-

gories from all categories in the target domain dataset

and, within each category, we randomly select k im-

ages for the support set and 16 images for the query

set. For each task, we fine-tune the pre-trained model

on the support set and evaluate its performance on the

query set. We repeat this process 600 times for each ex-

periment setting, resulting in 600 fine-tuned and eval-

uated models. Average classification accuracy and its

95% confidence interval on the query set are reported

in accordance with the benchmark evaluations.

Implementation Details. To make a fair compari-

son with existing works (Guo et al. 2020; Phoo and Har-

iharan 2020; Liang et al. 2021), in all experiments we

use ResNet-10 backbone network with SGD optimizer.

For pretraining, we set the learning rate to 0.05 and

the batch size to 64 for 350 epochs. We then conduct

meta-finetuning on each target domain for 50 epochs

with a learning rate of 0.01. We found that setting the

prototype number of each class Vt
i to 20 is sufficient

to obtain satisfactory results. To ensure that each pixel

on the feature map has a sufficient field of perception,

we set W = H = 5, thus the input image resolution is

scaled to 160 × 160. Following previous works (Tseng

et al. 2020; Wang and Deng 2021b; Hu and Ma 2022),

we also used a meta-trained lightweight GNN (Garcia

and Bruna 2018) as final classifiers to learn the relation-

ship of few-shot samples to obtain the final results. As

the test phase required less graphics memory and could

be executed on a lower-performance GPU, our model

was implemented in the PyTorch (Paszke et al. 2019)

framework on a single NVIDIA GTX3090 GPU.

5.2 Comparison with State-of-The-Art

Benchmarking on Domain with Diverse Levels.

We first conduct comparisons on the most widely-used

BSCD-FSL benchmark (Guo et al. 2020) with the state-

of-the-art models. Tab. 1 exhibits the results of differ-

ent levels of domain transfer, i.e., a gradual decrease

of visual features from CropDisease and EuroSAT to

ISIC and ChestX shared with the source domain. For

fair comparisons, we also extend the FRN (Wertheimer

et al. 2021) on this cross-domain few-shot setting with
the prototypical networks (Snell et al. 2017) on cross-

domain classes and we finetuned FRN with the iden-

tical hyper-parameters and optimizer, noted as FRN∗.

Identical to our method, FRN∗ adopts the SGD opti-

mizer with a learning rate of 0.01 and performs meta-

finetuning on each target domain for 50 epochs. From

Tab. 1, the finetuning on FRN leads to an inferior per-

formance than FRN, indicating that the FRN repre-

sentations are easy to overfit on few-shot samples, es-

pecially on these datasets with huge domain gaps. Note

that FRN methods are built upon the ResNet-12 back-

bone while others are using the lightweight ResNet-10

backbones. Our method on average achieves 53.63%

and 67.05% on 5-way 1-shot and 5-shot settings respec-

tively, outperforming all the listed CDFSL competitors

significantly, including ConFT (Das et al. 2021), Con-

FeSS (Das et al. 2022), and KT (Li et al. 2023), and

our proposed IDP leads a new state-of-the-art.

Benchmarking on Natural Images. Besides the

diverse domain benchmarking, the other line of work
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Table 2 Comparisons with state-of-the-art models using the 5-way random-shot setting on Meta-Dataset benchmark. The
performances are evaluated using official codes and the best values on each set are highlighted in bold.

Test Dataset KT Li et al. (2023) LDP-Net Zhou et al. (2023) TSA Li et al. (2022b) IDP(ours)
ILSVRC 62.51 59.86 80.37 77.42
Omniglot 79.34 90.15 93.01 98.64
Aircraft 44.48 60.94 61.88 75.14
Birds 55.86 57.51 84.80 71.28

Textures 65.59 65.35 75.76 78.82
Quick Draw 71.97 83.98 78.71 87.64

Fungi 50.82 45.84 69.98 68.46
VGG Flower 78.84 82.83 91.63 96.28
Traffic Sign 56.42 86.04 75.07 88.04
MSCOCO 58.71 62.17 72.90 76.16

Avg. 62.45 69.47 78.41 81.79

Fig. 4 Frequency distribution of randomly sampled distances between feature pairs from different domains (Higher values
indicates better domain alignments.). a1) and a2): Domain-transferring ability of Baseline and Ours. b): Intermediate
domain proxies boost knowledge-transferring capabilities.

Table 3 Ablation studies of 5-way K-shot learning of differ-
ent modules.

Method

EuroSAT Places

1-shot 5-shot 1-shot 5-shot

GNN (base) 63.69±1.0 83.64±0.8 53.10±0.8 70.84±0.7
+Ltar 66.82±0.6 87.59±0.4 53.39±0.7 74.34±0.6

+Lproxy 68.95±0.7 90.11±0.5 53.73±0.7 77.37±0.6
+Lalign 71.60±0.7 91.08±0.4 54.07±0.6 78.08±0.6

Table 4 Effects of different optimization combinations on 5-
way K-shot learning performance. BNl and BNh indicates the
low-order and high-order statistics.

Optim. EuroSAT Places

fθ BNl BNh 1-shot 5-shot 1-shot 5-shot

69.54±0.7 88.74±0.4 52.30±0.7 76.83±0.6

✓ 70.66±0.7 90.76±0.4 53.83±0.7 77.78±0.6

✓ ✓ ✓ 69.18±0.7 88.84±0.5 53.72±0.7 77.32±0.6

✓ ✓ 71.60±0.7 91.08±0.4 54.07±0.6 78.08±0.6

focuses on natural images but with different data dis-

tributions. Tab. 1 presents the comparisons on natural

images, e.g., cars and birds, with representative state-

of-the-art methods including NSAE (Liang et al. 2021),

ConFT (Das et al. 2022). Similar to the CDFSL bench-
mark, following the class split of Tseng et al. (2020),

we also conduct experiments on FRN and finetuned

FRN (FRN∗) on these natural domain images.Note that

FRN (Wertheimer et al. 2021) adopted ResNet-12 as

backbones while others used ResNet-10. FRN shows

better performance in a 1-shot setting when there are

fewer domain gaps, e.g., CUB datasets. When more

samples are available (i.e., 5-shot), our method sur-

passes FRN by over 6.33% on average. Besides, it can

be observed that our method shows leading results to

prevailing methods under this natural domain setting.

Among them, our method outperforms the second-place

method ConFT (Das et al. 2022) by over 4% on aver-

age for the 5-way 5-shot setting, indicating the strong

generalization capabilities of our method.

Extensions on Meta-Dataset. Compared to the

prevailing datasets, the Meta-Dataset (Triantafillou et al.

2019) is a large-scale benchmark consisting of ILSVRC-

2012 (Deng et al. 2009) as the training set and ten in-
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Fig. 5 The effect of different size of class prototype Vt
i. All

experiments are conducted under 5-way 5-shot conditions,
and the vertical coordinates indicate the performance of our
method.

Fig. 6 The effect of resolution of the feature map. All experi-
ments were conducted under 5-way 5-shot conditions, and the
vertical coordinates indicate the performance of our method.

dividual datasets as the testing set. Additionally, the

Meta-Dataset benchmark (Triantafillou et al. 2019) in-

troduces varying samples for each class, determined based

on the distribution of real-world data. For each task, we

randomly select 5 categories from all categories in the

test dataset. Following Triantafillou et al. (2019), the

sample size for each category’s support set is a random

number in [1, 100], while the number of query samples is

fixed at 10, as all categories hold equal importance. We

computed the average accuracy and 95% confidence in-

terval for 600 independently sampled tasks while keep-
ing the other implementation details consistent with

the CDFSL benchmark. The results of our method are

presented in Tab. 2. We select three state-of-the-art

methods for comparison, i.e., KT (Li et al. 2023), LDP-

Net (Zhou et al. 2023), and TSA (Li et al. 2022b). We

conduct the 5-way random-shot experiments with their

open-source code for fair comparisons. Compared with

these methods, our IDP maintains its leading position

on the Meta-Dataset benchmark and achieves clear im-

provements on multiple subsets, indicating its powerful

generalization ability to adapt to real-world scenarios.

5.3 Performance Analyses

Effect of Different Components. To evaluate the

effectiveness of our method, we perform ablation stud-

ies in Tab. 3. In the first row, we show the performance

of the baseline model GNN, Ltar represents the addi-

tion measurements to obtain the predicted values. It

can be found that this metric effectively improves the

discriminative ability of the model. Further, we use the

spatial feature pool U to reconstruct the target domain

support set samples to obtain intermediate proxies P.

After that, we optimize the classifier with the cross-

entropy loss Lproxy of these intermediate proxies with

labels as shown in the third row, which improves the

cross-domain generalizability of the model. We even-

tually add intermediate proxy alignment loss Lalign to

further improve the final performance.

Variant of Alignment Loss Optimization for

Intermediate Proxies. In Tab. 4, we compare the ef-

fects of optimizing different components of the network.

where fθ represents the optimization of the whole net-

work parameters, BNl represents the tuning of the statis-

tics of the BN layer using intermediate proxies, and BNh
represents the optimization of the learnable scaling and

shifting parameters of the BN layer. Comparing the first

two rows we can observe that the proposed strategy for

adjusting the BN layer statistics is effective. Further,

we find that optimizing the entire network parameters

using alignment loss Lalign in the third row overfits the

model to the intermediate proxies, which impairs the

performance. Finally, we use alignment loss to optimize

only the higher-order learnable parameters of the BN

layer BNh, achieving the highest performance in the last

row.

Effect of Intermediate Proxy Alignment Loss

on Distribution. In Fig. 4, we show the difference

between the distribution of the source and target do-

mains (a1) without alignment loss Lalign and (a2) with

alignment loss. We conduct the following steps to calcu-

late the alignment scores: a) Randomly sampling pairs

of data from different domains; b) Calculating the Eu-

clidean distance of their L2 normalized representations;

c) Plotting the frequency distribution of distances within

small intervals. It can be observed that the addition of

the alignment loss significantly reduces the source and

target domain metrics,i.e., the difference distribution

is closer to 1. This shows that our approach can better

transfer the knowledge learned by the model during the

pre-training phase on the source domain to the target

domain. 4(b) shows the difference between the distribu-

tion of target domain samples and intermediate prox-

ies, and it can be seen that the intermediate proxies are

closer to the target domain, hence it is easier to align

them.

Effect of Prototype Size. In Fig. 5, we exhibit

how different sizes of class prototype Vt
i affect the per-

formance of our method. It can be observed that on the

one hand if the prototype size is too small then the rep-

resentation of the categories is insufficient, on the other
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Fig. 7 Visualization of reconstruction using different source domain feature pool
sizes.

Fig. 8 t-SNE comparisons of 5-
way classification on target do-
mains (EuroSAT).

hand, a large prototype size reduces the discriminative

ability of the model.

Effect of Feature Resolution for Reconstruc-

tion. In Fig. 6, we present how the resolution of the

feature map affects the performance of our method. It

can be observed that the size of the image region cor-

responding to each vector on the feature map affects

the retention of details by the network. Smaller scales

(3×3) of the network features usually lead to the coarse

observation of local details, while larger scales (7 × 7)

lead to an inferior focus on the global reception field.

Extensions on Intra-domain Gap. To evaluate

the effectiveness of our method, the extreme scenarios

for cross-domain learning is “intra-domain”, i.e., evalu-

ated on the same miniImageNet dataset (Vinyals et al.

2016). We compare with the recent few-shot learning

method on the mini-ImageNet dataset. Our proposed

method uses the ResNet-10 network as backbones but

still achieves good performance in this intra-domain set-

ting, as in Tab. 5, which indicates the strong general-

ization ability when facing fewer domain gaps.

Computational Efficiency.Our proposed method

shows similar computational costs compared to the base-

line methods (Garcia and Bruna 2018). Benefiting from

the optimization scheme, the intermediate domain prox-

ies are dropped during the inference stage, and our

method does not rely on many additional network pa-

rameters. The detailed inference time and computa-

tional costs are presented in Tab. 6. With the additional

8.5% costs, our method improves the baseline by a large

margin, e.g., 43.96% to 53.36% on the ISIC dataset.

Table 5 Comparisons with state-of-the-art models on mini-
ImageNet benchmark dataset. The best values on each set are
highlighted in bold. †: using ResNet-12 backbones. ∗: using
lightweight ResNet-10 backbone.

Method 5-way 1-shot 5-way 5-shot

FEAT† (Ye et al. 2020) 66.78±0.20 82.05±0.14

H-OT† (Guo et al. 2022) 65.63±0.32 82.87±0.43

SAPENet† (Huang and Choi 2023) 66.41±0.20 82.76±0.14

MatchingNet∗ (Vinyals et al. 2016) 58.76±0.61 72.53±0.69

RelationNet∗ (Sung et al. 2018) 58.64±0.85 73.78±0.64

GNN∗ (Garcia and Bruna 2018) 66.32±0.80 81.98±0.55

IDP(Ours)∗ 67.16±0.71 84.64±0.46

Table 6 Comparison of computational efficiency with repre-
sentative methods.

Method GFLOPS Time (ms)

GNN (Garcia and Bruna 2018) 189.0 14.6

GNN-ATA (Wang and Deng 2021a) 196.1 15.9

TPN-ATA (Wang and Deng 2021a) 211.6 17.3

KT (Li et al. 2023) 214.1 19.6

IDP (Ours) 205.2 19.3

5.4 Visualization and Explanations

Effect of Source Domain Feature Pool. In Fig. 7,

we show the relationship between the number of fea-

ture pool sizes and the reconstruction. It can be ob-

served that as the pool of features involved in the re-

construction becomes larger, the intermediate proxies

are able to reconstruct the target domain samples more
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clearly. Conversely, when the proxy pool is relatively

small (≤ 50), the reconstructed intermediate proxies

are more ambiguous and show more of the source do-

main style. This indicates that the intermediate domain

reconstruction is controllable when changing the recon-

struction materials in the stored feature pool.

Target Domain Category Embedding. We vi-

sualize the target domain embeddings in the EuroSAT

dataset in Fig. 8 using t-SNE. Fig. 8 shows that our

methods generate few intra-class differences and larger

inter-class differences compared to the baseline. This in-

dicates after domain adaptation, our proposed method

retains a stronger discriminative capability with only a

few given samples.

6 Conclusions and Limitations

In this paper, we start from a different view to revisit

the problem of cross-domain few-shot learning. Prevail-

ing research efforts mainly focus on the generalized rep-

resentation of feature learning while neglecting the fast

domain alignment with these few samples. Toward this

end, we propose to reconstruct an intermediate domain

using source embeddings and use the reconstructed do-

main proxies to develop a fast domain transformation

technique with normalization layers. Despite its supe-

rior performance on public CDFSL benchmarks, our

proposed method still relies on dense feature recon-

structions, which may limit the extension of our work on

segmentation and dense estimation vision tasks, which

we leave for our future exploration.
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Appendix

A. Additional Details of the Empirical Study

A.1 Implementation Details

To conduct the empirical study, we first organize two

“sub-Domains”, domain A and domain B. Both “sub-

Domain” are sampled frommini -ImageNet (Vinyals et al.

2016) and contain a series of stylistically distinct and

visually similar image classes. We give more examples

of domain A and domain B in Fig. 9 and 10, where

it can be observed that since objects in domain A are

often located in the jungle or on grass, they are visu-

ally greenish in color; in contrast, objects in domain

B are often located underwater and are visually bluish

in color. The impact of feature base {Ci}ni=1 on do-

main reconstruction can be inferred by observing the

performance of the reconstructed intermediate domain

proxies P in terms of style and content.

For image level reconstruction img −→ r.img , we

first resize the image to 224 × 224 and slice the image

into blocks of size 7× 7, each with a length and width

of 32. feature bases {Ci}ni=1. We flatten these image

blocks into vectors, which are used as our feature bases

{Ci}ni=1 ∈ Rn×1024. It is worth noting that since the

reconstruction process is independent of the spatial lo-

cation of the pixels, the flattening operation does not

affect the results of the image block reconstruction. We

then solve for the intermediate agent P according to

Eq. 2.

For feature level reconstruction feat −→ r.feat ,

we still resize the image to 224, which will result in an

output feature map size of 7× 7 for backbone network

f(θ). We use the pixels on the feature map as feature

bases {Ci}ni=1 ∈ Rn×d and perform a reconstruction

process similar to the image level reconstruction de-

scribed above, where d is the output feature dimension

of the f(θ).

A.2 Visualization Method

For image level reconstruction img −→ r.img, we re-

shape the reconstructed vectors into image blocks and

stitch these image blocks into a new image according

to their spatial locations. For feature level reconstruc-

tion feat −→ r.feat, we obtain feature maps as the re-

construction results. However, since these feature maps
cannot be directly visualized, we propose to utilize a de-

coder to convert them into images. Table 7 illustrates

the architectural specifications of the decoder, which

can be seen as a mirrored version of the ResNet10 back-

bone network. It consists of Deconv blocks, each Deconv

block containing an upsampling function, a convolution

operator, and a ReLU activation. We train the decoder

to decode the original images from the feature maps,

which are generated by the encoder. Finally, we utilize

the decoder to visualize the intermediate representa-

tions.

A.3 More Visualization Results

In Fig. 11, we visualize more intermediate proxies for

image-level reconstructions. We can observe a strong

relationship between the number of image blocks in-

volved in the reconstruction and the reconstruction re-

sults. When reconstructing the target image using only
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Table 7 The architecture specifications of the decoder mod-
ules in ResNet10. We insert a BatchNorm layer behind each
Deconv layer.

Module Specifications

ResNet10

3Ö3 Deconv-ReLU, 256 filters, stride 2, padding 1
3Ö3 Deconv-ReLU, 128 filters, stride 2, padding 1
3Ö3 Deconv-ReLU, 64 filters, stride 2, padding 1
3Ö3 Deconv-ReLU, 32 filters, stride 2, padding 1
3Ö3 Deconv-Sigmoid, 3 filters, stride 2, padding 1

one image block, i.e., the first column of Fig. 11, the

intermediate proxy is simply a concatenation of differ-

ent brightness and contrast combinations of that image

block. As the number of image blocks involved in the re-

construction increases, the intermediate agents behave

from blurred to clear and eventually very close to the

target image.

B. Proof of Proposition 1

Proposition 1 (High semantic similarity). By control-

ling the ridge regression regular term λ , the semantic

similarity between the intermediary domain proxy Pλ

and the target domain T is larger than that between

the source domain S and the target domain T . Their

inter-domain discrepancy distance satisfies the follow-

ing relationship: ∃ λ ,s.t. discL(S, T ) > discL(P, T )

Proof. We first recall the formula for ridge regres-

sion:

Ŵ = argmin
W

∥T−WU∥2 + λ ∥W∥2 , (16)

where U ∈ Rn×d denote the generalized representa-

tion of each source domain visual pattern andT ∈ Rr×d

denote the target domain embeddings required to be re-

constructed. The hyper-parameter λ is used to balance

the regularization of the ℓ2-norm. As stated in Section

4.2, we begin by resizing the feature pool through clus-

tering mapping M : Rn×d → Rr×d. This operation

aligns the size of U with T and sets the dimension of

W to r × r.

Next, we define F(λ) = ∥T − P∥2 − ∥T − U∥2 as

the difference from the T to the P and from T to U.

Since Ŵ = TU⊤(UU⊤ + λI)−1 is the ridge regression

closed-form solution, F can be rewritten as:

F(λ) = ∥T−TU⊤(UU⊤ + rI)−1∥2 − ∥T−U∥2. (17)

We then solve for the partial derivative of F with re-

spect to r.

∂F(λ)

∂r
= 2tr(H(T⊤ −HUT⊤)TU⊤H), (18)

where tr denotes the trace of the matrix and H =

(UU⊤ + rI)−1 in order to simplify the expression. It

can be observed that the monotonicity of F is deter-

mined by both the regular term r and the distribution

of the data. Therefore, we discuss it by situation:

If λ is equal to 0. According to the property of

ridge regression, we can obtain that for any W∗ ∈
R

n×n, the target domain embeddings T satisfies

∥∥∥T− ŴU
∥∥∥2 + λ

∥∥∥Ŵ∥∥∥2 ≤ ∥Ti −W∗U∥2 + λ ∥W∗∥2 ,

(19)

where Ŵ = TU⊤(UU⊤+λI)−1 is the ridge regression

closed-form solution. Assuming T ̸= U, we then sub-

stitute the identity matrix I ∈ {0, 1}r×r for W∗ in this

equation, and obtain:∥∥∥T− ŴU
∥∥∥2 + λ

∥∥∥Ŵ∥∥∥2 < ∥T−U∥2 + λ ∥I∥2 . (20)

Bringing λ = 0 into the Eq. (20), we can prove that

F < 0.

If λ > 0 and F is monotonically increasing.

Data noise may causes ∥T−WU∥2 to be monotoni-

cally increasing, since r = 0 with F(r) < 0 holds, there

must exist a λ = λ′ near 0 for F(λ) < 0 to hold.

If λ > 0 and F is decreases first , there will exist

λ > λ′ such that F(λ) < 0.

According to Definition 1, we can conclude that

Proposition 1 holds. □

C. Proof of Proposition 2

Proposition 2 (Reducing target classification error).

Aligning the target domain T to the intermediate do-

main proxy Pλ can reduce the discrepancy distance be-

tween the source and target domain discL(S, T ), which

in turn reduces the error of the classifier ϵT on the tar-

get domain.

Proof.We start by defining the symbols. Specifically,

we denote l as the class labeling function, with lS repre-

senting the function for the source domain and lT rep-

resenting the function for the target domain. Consider a

hypothesis setH = {h}i, and let h∗
S ∈ argminh∈H Lc

S(h, lS)

and h∗
T ∈ argminh∈H Lc

T (h, lT ) be the classifiers that

minimize the empirical risk on the source dataset S
and the target dataset T , respectively (Zhang et al.

2020c). The hypothesis error of the target domain clas-

sifier can be defined as ϵT = Lc
T (h, lT ) − Lc

T (h
∗
T , lT ).

Since our difference distance loss function discL is sym-

metric and obeys the triangle inequality, according to
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Fig. 9 More illustration of objects in domain A. Domain A consists of partial mini-ImageNet dataset categories, including
birds, dogs, and sloths, which are objects in the jungle or on the grass.

Fig. 10 More illustration of objects in domain B. Domain B consists of partial mini-ImageNet dataset categories, including
jellyfish, manatee, and butterfly fish, which are underwater objects.

domain adaptation theory (Mansour et al. 2009; Ben-

David et al. 2010) for any hypothesis h ∈ H, the fol-

lowing holds:

Lc
T (h, lT ) ≤ Lc

T (h
∗
T , lT ) + Lc

S(h, h
∗
S)+

discLd(S, T ) + Lc
S(h

∗
S , h

∗
T ).

(21)

This inequality can be transformed into

ϵT ≤ Lc
S(h, h

∗
S) + discLd(S, T ) + Lc

S(h
∗
S , h

∗
T ). (22)

We observe that the hypothesis error with respect

to the target domain ϵT is linked to the average loss

of source classification Lc
S(h, h

∗
S), the discrepancy dis-

tance discL(S, T ), and the average loss between the

best intra-class hypotheses Lc
S(h

∗
S , h

∗
T ).

Since our method follows a two-stage training for-

mat, Lc
S(h, h

∗
S) remains constant after pre-training. Fur-

thermore, in order to achieve successful domain adap-

tation, it is reasonable for the optimal classifiers h∗
S

and h∗
T in the source and target domains, respectively,

to exhibit low inconsistency in semantic prediction, as

measured by Lc
S(h

∗
S , h

∗
T ). With our proposed alignment

loss Lalign, the model will force for samples in the tar-

get domain T to extract more features that express the

style of the source domain S, i.e., reduce discL(S, T )

to discL(S,P) as the optimization proceeds. According

to the conclusion of Proposition 1, this will reduce the

target domain classifier error ϵT . □
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