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Reliable Event Generation With Invertible
Conditional Normalizing Flow

Daxin Gu , Jia Li , Senior Member, IEEE, Lin Zhu , Yu Zhang , and Jimmy S. Ren

Abstract—Event streams provide a novel paradigm to describe
visual scenes by capturing intensity variations above specific
thresholds along with various types of noise. Existing event genera-
tion methods usually rely on one-way mappings using hand-crafted
parameters and noise rates, which may not adequately suit diverse
scenarios and event cameras. To address this limitation, we propose
a novel approach to learn a bidirectional mapping between the
feature space of event streams and their inherent parameters,
enabling the generation of reliable event streams with enhanced
generalization capabilities. We first randomly generate a vast num-
ber of parameters and synthesize massive event streams using an
event simulator. Subsequently, an event-based normalizing flow
network is proposed to learn the invertible mapping between the
representation of a synthetic event stream and its parameters. The
invertible mapping is implemented by incorporating an intensity-
guided conditional affine simulation mechanism, facilitating better
alignment between event features and parameter spaces. Addition-
ally, we impose constraints on event sparsity, edge distribution,
and noise distribution through novel event losses, further empha-
sizing event priors in the bidirectional mapping. Our framework
surpasses state-of-the-art methods in video reconstruction, optical
flow estimation, and parameter estimation tasks on synthetic and
real-world datasets, exhibiting excellent generalization across di-
verse scenes and cameras.

Index Terms—Conditional normalizing flow, contrast threshold,
event camera, event generation, event noise rate.

I. INTRODUCTION

EVENT camera [1], [2] is a new type of vision sensor that
measures brightness changes by the asynchronous event

stream. With the advantage of high temporal resolution, high
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Fig. 1. Framework of our approach. With the sharing sampling principle of
different dynamic vision sensors (DVS) shown in (a), the main factors affecting
the event quality are contrast thresholds (CT mismatch) and event noises. To
learn the inherent relationship between camera parameters and event spaces, we
propose an invertible event generation network (shown in (b)) that can not only
estimate camera parameters from target domain events but also produce high-
quality synthetic event stream and its representation reversely. The visualization
results in (c) show that our approach can adapt the target event distribution
automatically, resulting in better reconstruction results (c).

dynamic range, and low power consumption, the event camera
has shown promising performance in many computer vision
tasks, such as video reconstruction [3], [4], [5], [6], optical flow
estimation [7], [8], [9], [10], semantic segmentation [11], [12],
etc.

Despite numerous advances in event-based vision, training
the deep learning-based approaches requires a large amount of
simulated event data, which is limited by the performance of the
event simulator (e.g., ESIM [13], V2E [14]). As shown in Fig. 1,
the realistic event streams can vary significantly when different
event cameras and their settings are used. A high-quality simula-
tion of event streams needs careful tuning of the event simulator
according to different scenarios [15], [16], [17], which is often
an arduous and time-consuming task. This brings us an open
question in event-based vision field: How to generate reliable
event streams to fit all event cameras in diversified scenarios?

To solve this problem, a class of event generation strate-
gies has been proposed from the perspective of reducing the
sim-to-real gap, which considers it as a domain adaption task
and operates on the learned features. These strategies aim to
transfer event representations to the target domain in order to
directly improve the generalization capabilities of deep models.
For example, Zhu et al. [18] propose an end-to-end manner that
translates images to events directly via a CycleGAN [19] based
framework. Planamente et al. [17] introduce domain adaptation
techniques to event data to help reduce the sim-to-real gap.
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Gu et al. [20] propose a learning-based event simulator that
reduces the gap between synthetic and real data by learning
distributions of event contrast thresholds from real events. This
category of approaches can learn event distribution from target
domain data automatically and efficiently. However, these de-
terministic generating frameworks are designed for transferring
the synthetic events to a specific target domain, which needs
to be re-trained or fine-tuned for modeling the various settings
of event cameras and uncertainty of usage scenarios. In other
words, this category of strategies has limited generalization for
various scenarios or event cameras.

Another category aims to calibrate appropriate hand-crafted
generation parameters and simulate target events via existing
event simulators [13], [14]. In general, hand-crafted parameters
are designed based on the physics process of event generating.
For example, Brandli et al. [21] propose a parameter estimating
approach that utilizes the difference between the intensity image
and event cumulative map to update parameters iteratively. Stof-
fregen et al. [16] present a strategy to search a set of appropriate
parameters for existing simulators (e.g., ESIM [13]) by measur-
ing the average events per pixel per second. Wang et al. [22]
estimate parameters by building and solving an overdetermined
system of events number, parameters, and log intensity changes.
Compared with methods in the first category, some heuristic
metrics are utilized to compile statistical event stream infor-
mation, which has a better generalization to a certain extent.
Unfortunately, it is difficult to fully characterize a realistic
pixel model (e.g., the contrast threshold mismatch and noise
distribution of the event camera) if only relying on hand-crafted
parameters. Moreover, the lengthy event simulating steps and
complex parameter tuning strategies make it difficult to gener-
alize to other domains.

In this paper, we start from a new perspective that both
learned features and hand-crafted generation parameters should
be utilized to generate a reliable event stream for diversified
scenarios. Instead of considering the event generation as a uni-
directional generation or estimation task, we attempt to model
the event stream and the parameter features in a unified invert-
ible framework. The main reasons can be briefly summarized
as follows: 1) First, the deterministic generation frameworks
(e.g., [17], [18], [20]) that learn features from event distributions
are efficient for transferring the synthetic events to a specific
target domain. However, the disadvantage is that the inherent
randomness of event generation from noisy contrast threshold
sampling is difficult to be modeled without additional guidance.
2) Second, incorporating the hand-crafted parameters of event
generation is critical to model generalization. Although the
hand-crafted parameters are usually simple [16], [21], they are
developed to some extent based on the sensor characterization
(e.g., contrast threshold, noise level). These parameters have a
clear physical definition to guide event emitting and are common
to different event cameras or scenarios. Thus, with the guidance
of parameters, the event distribution learned by the model will
be more realistic and more generalized.

Based on the above analysis, we propose a novel invertible
event generation framework based on conditional normalizing
flow [23], which efficiently exploits the inherent relationship

between the event distribution space and the event parameter
space. The event representation and event parameters can be
generated and optimized in an invertible manner. Specifically,
according to the physics-based event generation model, we first
define several parameters of the event stream: intensity changes,
contrast threshold, and temporal event noise. Thanks to the
exact log-likelihood training mechanism of normalizing flow,
our approach can build an explicit projection between event
parameters space and event distribution space for each pixel. It
allows our normalizing flow network to learn the calibration of
precise event camera parameters consistent with the input event
streams. The event parameters and event distribution features
can be simultaneously optimized based on the proposed invert-
ible framework. Unlike previous works [17], [18], [20], we do
not need to re-train or fine-tune our network for new scenarios
because the invertible framework can learn the relationship
between event parameters and event distribution spaces. It also
makes our framework generalize well to different types of event
cameras (e.g., CeleX5 [24], DAVIS240 [2], DAVIS346 [25]) due
to their event generation models being common.

The main contributions of this paper are summarized as:
1) We propose a novel invertible event generation frame-

work, which has for the first time built the inherent rela-
tionship between event parameter space and event distri-
bution space. The proposed framework generalizes well to
multiple scenarios and event cameras without re-training
or fine-tuning, while performing significantly better than
recent state-of-the-art methods.

2) We design a novel intensity-guided conditional affine sim-
ulation module, which is able to build an invertible and
bijective mapping from event to parameter under a certain
intensity. We also explore multiple event-based losses,
including a conditional loss, an event representation loss,
and two flow losses, which are effective for optimizing our
invertible network.

3) Experiments on both synthetic and real-world datasets
demonstrate that our framework accomplishes superior
performance for both threshold estimation and noise es-
timation. Moreover, the generated event streams improve
over the state-of-the-art on two downstream vision tasks
(i.e., video reconstruction and optical flow estimation) that
are very sensitive to the distribution of events and noise,
demonstrating the superiority of our framework.

The rest of this paper is organized as follows: Section II re-
views related work. Section III analyzes the physics-based event
generation model and discusses the effects of each parameter.
Section IV presents the whole framework of our approach. Qual-
itative and quantitative experiments are reported and analyzed
in Section V. Finally, Section VI concludes our work.

II. RELATED WORK

This section briefly reviews the existing methods strongly
related to our work, including dynamic vision sensor, event data
generation, event parameter estimation, and normalizing flow.
Table I summarizes the difference of existing event generation
methods with the works related to event parameter estimation.
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TABLE I
SUMMARY OF EXISTING ASYNCHRONOUS/SYNCHRONOUS EVENT GENERATION AND PARAMETER ESTIMATION APPROACHES

A. Dynamic Vision Sensor

Dynamic vision sensor (DVS) captures intensity information
in a considerably different manner from other conventional
CMOS-based image sensor technology. It records intensity
change instead of intensity absolute value, which causes its
low latency and high dynamic range. With the development of
DVS, there are serial of manufacturers (e.g., iniVation, Samsung,
CelePixel, et al.) developing DVS in different circuit designs
and parameter configurations [31]. A main trend of DVS de-
velopment is that it has increasing spatial resolution, increasing
readout speed, and adding features (e.g., grayscale output, color
vision, inertial measurement unit (IMU), and optical flow). The
first practical DVS is DVS128 [1], whose spatial resolution is
128 × 128 pixels. It can only output events without IMU and
grayscale images. Then more DVSs are developed with larger
spatial resolution, such as DAVIS240 [2] (240 × 180 pixels) and
DAVIS346 [25] (346 × 260 pixels). Most of them are designed
to record not only event streams but also grayscale images, IMU
with more bandwidth (faster readout speed). Recent DVSs have
developed more spatial resolution (CeleX5 [24], Gen4-CD [32],
and DVS-Gen4 [33]), whose horizontal resolution can reach
more than 1280 pixels, while the maximum bandwidths are
larger than 100 Meps (compared with 1 Meps for DVS128).
There are some other efforts to provide additional functions
for DVS. For example, [34], [35], [36] attempt to offer color
information with filter arrays. [24], [37] provide optical flow
information when recording events.

While all the aforementioned Dynamic Vision Sensors
(DVSs) are designed using event generation models, the varia-
tions in circuit structures and manufacturing techniques result in
slight differences in the distributions of their event streams. This
poses challenges to the reliable generation of events in our task.

B. Event Generation and Parameter Estimation

Asynchronous Event Stream Simulation: The prior works [13],
[14], [26], [27] try to simulate massive event streams by input
video. For example, an event simulator [26] proposes to generate

events with image sequences by mimicking real event cam-
era imaging processes that record the difference in intensities
between consecutive images. However, the asynchronous and
noise of the event camera are not simulated. In order to address
the problems, Bi et al. [27] propose to simulate events with high
frame rate rendering images. At the same time, the approach
mimics a real event camera to provide the asynchronous readout.
The ESIM simulator [13] and v2e simulator [14] mimic several
key steps of the real physical process of event cameras to
generate event streams, including contrast threshold noise and
temporal noise. These event simulators can provide high-quality
event streams for other event-based tasks with the appropriate
simulation parameters. It has been shown well generalization
compared with real-world events [16], [38], [39]. However, these
simulators need elaborative manual tuning of various parameters
to bridge the sim-to-real domain gap.

Synchronous Event Representation Generation: To enhance
the performance of event-based deep learning models, a series of
research studies [28], [29] have focused on generating 2D deep
event features directly using deep learning models. For instance,
ELSTM [29] has been proposed to learn a 2D spatial grid of
events, efficiently representing the event stream. EZoom [28]
aims to denoise events and enhance resolution to improve down-
stream tasks. These works are capable of generating high-quality
event features from existing event data. However, there is an
inherent domain shift between the input 2D grids and the output
features. Other approaches [17], [18] treat event simulation as
a domain adaptation problem and generate event features to
serve as inputs for event-based downstream tasks. For example,
EventGan [18] proposes a CycleGAN-based framework [19]
to convert image sequences into event representations directly.
However, training CycleGAN with pairwise data fails to capture
the inherent randomness involved in generating events for a
specific image sequence. Planamente et al. [17] introduces an
unsupervised domain adaptation framework to convert synthetic
events generated by the ESIM simulator [13] into a specific
target domain. The generative models [17] can automatically
and efficiently generate event representations without requiring
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manual parameter tuning. However, the generation processes in
these methods are deterministic and cannot model the uncertain
event noise. Different from the above approaches, we propose
a novel intensity-guided conditional affine simulation module
that establishes an invertible and bijective mapping from events
to parameters. This module is designed to address domain shifts
in new datasets while providing sufficient generalization ability.

Event Parameter Estimation: A series of event parameter es-
timation works aim to estimate parameters with a simple model
(e.g., contrast threshold) by analyzing the relationship between
the event number occurring in a period of time and the intensity
change at the corresponding time [21], [22]. However, those
statistical methods are lack noise modeling of contrast threshold
mismatch and limited by the quality of image sequences. Stof-
fregen et al. [16] propose a strategy to search a set of appropriate
parameters for existing simulators (e.g., ESIM [13]) by aligning
the average events per pixel per second of synthetic events
with that of real ones. EVolt [30] models real DVS circuit and
calibrates its parameters by calculating multivariable regression.
LGAN [20] proposes a learning-based parameter estimating
approach, which learns the contrast thresholds by distinguishing
the events in different domains via several discriminators. Both
of those approaches can narrow the gap between synthetic and
real data with long-time training and amounts of real event
streams.

C. Normalizing Flow

Normalizing flow based models [23], [40], [41] parameterize
a distribution using an invertible neural network with another
one. It has been widely used in point cloud generation [42], [43]
and image conditional generation [44], [45]. The prior work
NICE [40] proposes a simple additive coupling layer, which
skillfully simplifies the calculation of reversible functions. After
that, RealNVP [41] ulteriorly proposes an affine coupling layer
to enrich the learning parameters of reversible functions. Be-
sides, the proposed spatial-channel features division, shuffle, and
squeeze strategy promote the use of convolution neural networks
in normalizing flow. The latter works mainly adopt the widely
successful Glow architecture [23], which first introduces the
actnorm layer and invertible 1 × 1 convolutions, to conditional
generation by encoding variables in the affine coupling layers.

Instead of parameter tuning design or fixed event domain
translation, we propose a learning-based invertible framework
that establishes a dependable relationship between parameters
and events. Thanks to the merits of normalizing flow for invert-
ible conversion of distribution, the proposed approach can not
only build the reversible mapping between event parameters to
events, but also generate event streams that align with target do-
main characteristics realistically. To the best of our knowledge,
this is also the first event-based invertible neural network.

III. PHYSICS-BASED EVENT GENERATION MODEL

This section revisits the working principle of the event camera,
including the fundamental parameters of the circuit components,
and analyzes the effect of those parameters based on real events.
It will provide guidance for designing our invertible network.

Fig. 2. Our event data collection scene. The illuminant is utilized to maintain
constant light intensity, and the screen is used to display different colors. The
light intensity can be measured by a photometer.

Fig. 3. Overview of event generation process and visualization of noise source
of each stage.

A. Event Signal Model

Essentially, the event sampling process can be expressed as
the following formula: Δlog(I) ≥ θ, where θ is the contrast
threshold of the event camera, I denotes the light intensity [1],
[2]. An event e = {x, y, t, p} occurs when the log intensity
changes Δlog(I) at position (x, y) over the set threshold θ at
time t. In detail, the whole events generation process can be
concluded into four stages, as shown in Fig. 3.

Photons Stage: When a photon flux signal L reaches a pixel
p on the photoreceptor at time t, it is transformed into a pho-
tocurrent Ip (Ip ∝ L). However, due to the quantal nature of
photons, this process introduces a constant photon shot noise
Ns [14]. Unlike conventional cameras that accumulate photons
over a fixed integration time, DVS integrates a constant number
of photons, triggering events when an intensity change exceeds
a defined threshold θ. Therefore, the photon shot noise is influ-
enced not only by the light intensities but also by the contrast
thresholds.

Electrons Stage: The photodiode exhibits a dark current Id
at all times, even in the absence of light, which introduces
noise Nd to the input photocurrent along with the photon shot
noise [46]. The impact of this noise is determined by the contrast
between the photocurrent and the dark current. In situations with
low lighting intensities, the input signal photocurrent becomes
comparable to the dark current, leading to a greater influence of
the dark current.

Voltage Stage: In this stage, the input photocurrent Iv =
Ip + Id undergoes logarithmic conversion and amplification
to produce a voltage change ΔV(tk), which is stored after
the last event triggered at time tk−1. DVS accomplishes this
through a change detector reset switch that resets the voltage
change once it reaches a certain threshold. However, the reset
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switch introduces an unavoidable junction leakage current Il,
which affects the voltage change and contributes to leakage
noise [46]. The voltage change can be described by ΔV(tk) =
− log( Iv(tk)

Iv(tk−1)
) +

∫ tk
tk−1

Ildu. Because the leakage current al-
ways reduces the voltage change ΔV(tk), the leak noise event
is activated as an ON event.

Signal Stage: The event signal is generated by comparing
the voltage change ΔV(tk) with the contrast threshold θ using
comparators [2]. When the voltage change ΔV(tk) crosses the
ON or OFF threshold, DVS outputs an ON or OFF event,
respectively. This can be expressed as follows:

⎧⎨
⎩
ΔVd(tk) ≤ −θON, ON events
ΔVd(tk) ≥ θOFF, OFF events
−θON < ΔVd(tk) < θOFF, no events.

(1)

In this stage, due to the abnormally low thresholds or reset
switches with very high dark current [14], the comparators will
records events continuously at a few hot pixels positions, even
in the absence of input.

B. Parameters Analysis

Our objective is to establish the correlation among parame-
ters, events, and brightness in order to synthesize events that
align with the target domain under different event cameras and
environmental conditions. From the event signal model, we can
identify two factors that have a significant impact on event
triggering: the contrast threshold θ and event noise N . The
contrast threshold determines the sensitivity of the event camera
to changes in intensity. On the other hand, noise events are in-
evitably generated during the event generation process, and they
can significantly affect the total number of events, particularly in
low-light scenarios. In this section, we introduce how to model
the event generation process using two key factors, i.e., contrast
threshold θ and event noiseN . To better model the event stream,
we first divide the events into two categories E = {EA, EN},
where EA = {eA1, . . . , eAk} represents the events that are not
affected by noise and EN = {eN 1, . . . , eNk} denotes the noise
events.

Contrast Threshold: The first category events EA are related
to the intensity changes of scenes and the contrast threshold
θ. As discussed in [13], the contrast thresholds are various in
different pixels and can be modeled with normal distribution
N (θ;σθ), where σθ is the mismatch variance of thresholds.
Furthermore, the ON thresholds θON that tagger ON events also
differ from the OFF thresholds θOFF. The contrast thresholds can
be adapted independently in real event cameras with the right set
of electronic biases. The mimicking of the threshold mismatch
is also considered as a key step in recent event simulators [14].

To estimate ON or OFF contrast thresholds, we build an ideal
laboratory environment (Fig. 2) to force the event camera to
record the events with ON or OFF polarity, respectively. Since
the contrast threshold cannot be directly obtained, we set the
sensor configure parameter (SCP) to different values to control
the contrast threshold of the event camera and capture bright
and dark screens separately for analyzing ON (OFF) contrast
thresholds. As shown in Table II and the first row of Fig. 4,

TABLE II
EVENTS CAPTURED BY CELEX5 WITH DIFFERENT THRESHOLDS

Fig. 4. Real events captured by CeleX5. We accumulate events in 30 ms
and present the DVS histogram. The top-right inset in each sub-figure shows
the frequency distribution of ON and OFF event rates. The axes represent the
frequency of events across the pixel array plotted against the event rate in Hertz
on a logarithmic scale (log10). The top-left of each sub-figure shows the intensity
change and threshold (θ ∝ SCP). The bottom-right of each sub-figure illustrates
the event rate. The three sub-figures in the first row show the events in a scene of
decreasing brightness (a), increasing brightness (b), and increasing brightness
with a larger contrast threshold (c), respectively. By comparing (b) and (c), it is
evident that a larger contrast threshold reduces the number of events. The other
three sub-figures show events captured in a fixed luminance of about 500 lx (d),
2000 lx (e), and 500 lx with a larger contrast threshold (f). Comparing (d) and
(e), we observe that a brighter scene produces fewer noise events. Additionally,
a larger contrast threshold reduces event noise compared (d) with (f).

we adjust the contrast thresholds in the range of 0.1 ∼ 0.5,
which is a common threshold value range for event cameras [47].
Obviously, the number of ON and OFF events in CeleX5 differ in
the same SCP set, and the variance of contrast thresholds is about
0.1. It means the mismatch of contrast thresholds is widespread,
which deeply influencing the output events. It further motivated
us to model ON and OFF contrast thresholds in our network.

Temporal Event Noise Rate: The number of noise events EA

determines the quality of the event streams, mainly affected
by scene intensity and sensitivity of DVS. Typically, the influ-
ence factors of event noise can be divided into several types,
such as photons shot noise, dark current, leak noise, and hot
noise, as shown in Fig. 3, which have been modeled in [14].
Although there have been several existing methods [14], [30]
that attempt to measure these noises individually, the complex
and intertwined mechanisms of event noise make it difficult to
isolate and precisely quantify each component independently.
To model event noise in different event cameras, we follow [46]
to utilize event noise rate (measured as the count of noise events
per second per pixel) to quantify the different noise sources,
respectively.
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Fig. 5. Noise events captured in a fixed scene with different light intensities and contrast thresholds. We fix the screen display and then adjust the intensity of
scene with the illuminator from 500 lx to 4000 lx. The contrast threshold of the event camera is changed with different SCP values. In each setting, we capture event
streams for about 30 seconds. Under a fixed light intensity, all events should come from noise. The abscissa of the line chart represents the luminance (×100lux),
and the ordinate represents the noise event rate (Hz). The red line is the ON event noise rate, and the blue line is the OFF event noise rate. SCP is positively correlated
to the contrast thresholds. Best viewed in electronic version.

Since there is currently a lack of quantitative analysis of the
event noise for the CeleX camera, we conduct measurements
of the noise level in terms of an event frequency per pixel (Hz)
and analyze the noise under different brightness and threshold
conditions. The statistical results are shown in Fig. 5. We collect
and compute ON (OFF) noise event rate ηON (ηOFF) under dif-
ferent intensities and contrast thresholds. Our analysis revealed
that the noise event rate depends on the scene intensity and the
event camera threshold, as these factors primarily influence the
occurrence of noise events. The results in the second row of Fig. 4
clearly show the noise distribution in different settings. The
number of noise events decreases with the increasing intensity
and contrast threshold. To simplify the noise process, we utilize
the temporal noise event rate η as a parameter to represent event
noise (see Fig. 5). These findings serve as evidence for the
subsequent validation framework’s noise estimation capability.
Furthermore, the visualization results in the second row of Fig. 4
clearly illustrate the noise distribution under different settings.
It is evident that the number of noise events diminishes as the
intensity and contrast threshold increase. This observation aligns
with the findings of [46], indicating a comparable relationship
between noise, threshold, and brightness in both CeleX and
DAVIS cameras. This insight inspires us to use a unified frame-
work for estimating the correlation between camera parameters
(θ andη), brightness, and events across different cameras, aiming
to improve generalizability.

IV. APPROACH

A. Motivation

The motivation of our framework is presented in Fig. 6. Our
goal is to generate appropriate parameters that approximate the
given target event domain (i.e., real captured event stream). It
is an ill-posed problem to estimate camera parameters from the
asynchronous and sparse event stream since the noise type and
event distribution are diverse. To solve this problem, we intro-
duce an intensity-guided conditional affine simulation to estab-
lish the reliable relationship between parameter and event space
based on a large amount of simulated data. In this way, a bijective
invertible mapping (Fig. 6(a)) can be built to ensure that the event
parameters P and event streams E can transform each other
with a specific intensity condition. Subsequently, the optimized
parameters of the target event domain can be predicted using the
real captured event and the invertible mapping (Fig. 6(b)), and
the realistic event streams are obtained (Fig. 6(c)).

Fig. 6. Motivation of our framework. (a) Our invertible network learns the
inherent relationship between event and parameter spaces based on simulated
data. (b) The optimized parameters of the target events can be obtained based on
invertible mapping. (c) Realistic events can be generated by the event simulator
with our optimized parameters.

Fig. 7 shows the sketch of our framework. As discussed in
Section III, we simplify the parameters of the event camera into
two main parameters, namely contrast threshold and temporal
noise rate. Based on the event generation model, a given event
streams E can be clearly defined by the intensity change of the
scene (I = Δ log(I)) and a group of event parameters (P =
{θON, θOFF, ηON, ηOFF}). On the basis of conditional normalizing
flow [23], the distribution of the event streams can be expressed
uniquely with the event parameters, and vice versa. The invert-
ible neural network is trained with maximum likelihood estima-
tion, using amounts of simulated event data and corresponding
simulating parameters. With the help of well-trained flow model,
the event noise rate (ηON and ηOFF) and contrast thresholds (θON

and θOFF) can be adapted for different target domains of real
event streams precisely.

B. Event-Based Invertible Neural Network Architecture

The general architecture of our event-based invertible neural
network is composed of an intensity encoder and the stacked
invertible normalizing flow layers. Each level of the invertible
normalizing flow layer contains 16 flow steps, where each flow
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Fig. 7. Illustration of our invertible network. Q, R, and D denote the event sampling process, event representation generation process, and light intensity changes
estimation, respectively. In the forward parameter estimation procedure, the event representation E combined the intensity changes I are transformed to event
parameters P through a parameterized invertible function fφ. In the inverse event generation procedure, the parameter P is transformed to event representation E

through the inverse function f−1
φ

.

Fig. 8. Pipeline of our invertible neural network. The event stream is processed through a series of flow steps to estimate event parameters per pixel. Each level of
the invertible normalizing flow layer contains 16 flow steps, each consisting of actnorm layer, channel shuffle layer, and conditional affine simulation. The details
of the flow step are illustrated in the right portion of the figure. Best viewed in electronic version.

step consists of actnorm layer, channel shuffle layer, and condi-
tional affine simulation, as illustrated in Fig. 8. We will introduce
the invertible architecture in this subsection.

Event Representation: To process the event stream using
conditional normalizing flow, the asynchronous event streams
should be converted into a fixed-size representation vector. We
follow [38] to encode the events into a spatiotemporal voxel
grid. In detail, we select ON (or OFF) events at a position p in
fixed-length duration Δt and discretize the events into B bins
by event timestamp t as :

E(tn) =
Δt∑

max(0, 1− |tk − t∗i |), (2)

where t∗i =
B−1
Δt (ti − t0) denotes the normalized event times-

tamp. In our work, the temporal bins B is set to 16.
Invertible Conditional Normalizing Flow: Our invertible

network explicitly establishes the conditional distribution
PE|I(E|I, ϕ) of event representations corresponding to the scene
intensity. Due to the event representations are changing with
the variety of parameter settings, we build a pixel-level model

between the events space and parameters space in a specific
intensity condition. The key point of our invertible network fφ
is to parameterize the distributionPE|I(E|I, ϕ) using conditional
normalizing flow. In the conditional setting, fϕ maps an event
representation in a specific condition scene to a group of parame-
tersP = fϕ(E; I). We hope the network is invertible for mapping
diverse event representations with corresponding parameters. In
detail, for the same scene, the event representation can be recon-
structed from corresponding parameters P as E = f−1

ϕ (P; I). In
this case, given the parameter distributionPP(P), the probability
density PE|I can be explicitly represented via the conditional
normalizing flows as,

PE|I(E|I, ϕ) = PP(fϕ(E; I))
∣∣∣det ∂fϕ

∂E (E; I)
∣∣∣. (3)

In order to enhance the expression ability of the conditional
normalizing flow, we compose a stack of invertible and tractable
bijective function {fϕn}Nn to build our invertible networks fϕ.
By applying the chain rule along with the multiplicative property
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of the determinant [41], (3) can be further expressed as

PE|I(E|I, ϕ) = PP(P)

N∏
n=0

∣∣∣det ∂fϕn

∂hn
(hn; gϕ(E; I))

∣∣∣. (4)

Equation (4) consists of a sequence of N invertible func-
tion hn+1 = fn

ϕ (hn; gϕ(E; I)), where h0 = E and hN = P.
The scene intensity change information is first encoded with
a lightweight network gϕ(E; I) to extract a high frequency
log-intensity change representation (described in Section IV-C),
which is suitable for conditioning all flow-function fϕn.

Conditional Flow Step: The conditional flow step is the basic
block of our invertible conditional normalizing flow. As shown
in Fig. 8, each flow step consists of three different layers. The
actnorm layer is first, followed by the channel shuffle layer.
At last, a conditional affine simulation layer is applied. Our
network employs K = 16 flow steps at each level. L = 4 levels
is set to transform parameter space (4 dimensions) from event
representation space (32 dimensions). The networks fϕn in the
conditional affine simulation layer are constructed via an MLP
network. Details of these layers are described as follows, and
the conditional affine simulation is described in Section IV-C.

Due to the different data dimensions between parameter space
and event space, a squeeze operation between a neighboring flow
step is introduced to the halves feature in the channel dimension.
In this way, only half of the latent variables can be transmitted
to the next flow step to estimate parameter space distribution.
Another half of the latent variables are abandoned. In the reverse
process, those parts of variables are sampled from a simple
distribution (e.g., standard normal distribution).

For a more flexible combination of latent features in two
different parts (event and parameter), we introduce the channel
shuffle layer to achieve the whole latent layer update hn+1 =
W · hn. In detail, the latent features are shuffled in channel
dimension via a given order W . Moreover, the channel shuffle
layer is invertible with efficient computing of determinants.
Similar as [23], we introduce the actnorm layer to channel-wise
normalizing via a learned scaling and bias.

C. Intensity-Guided Conditional Affine Simulation

Based on the analysis in Section IV-A, estimating camera
parameters from the event stream is an ill-posed problem. In-
spired by the event generation model, we introduce additional
intensity information to solve this problem. An intensity-guided
conditional affine simulation is proposed to establish a reliable
bijective mapping between parameter and event space.

Intensity Change Conditional Encoder: Our intensity change
encoder takes the combination of the above event representation
with low-framerate log-intensity change value (i.e., the total
log-intensity change in the corresponding duration) as input,
and outputs a high-framerate log-intensity change vector. The
network contains two stages. In the first stage, a two-layer MLP
structure is utilized to mix the input information of changed
log-intensity and event representation to generate a global in-
tensity change feature. This MLP structure extracts the features
of a continuous intensity change scene in a duration, which is
considered as the scene intensity condition input to the invertible

normalizing flow. In the second stage, to supervise learning
the continuous intensity change feature, we divide the global
intensity change feature into m pieces, where m is the intensity
change sample frequency. Empirically, we set m = 16 to obtain
sufficient temporal information. Subsequently, the m intensity
change features are input to another MLP network to infer
respective log-intensity change values. The MLP contains three
linear layers, which produce the features with 96, 96, and 1
channels, respectively. Note that each linear layer is followed by
a regularization layer (LayerNorm) and an activation function
(ReLU) in our network.

Conditional Affine Simulation: To ensure efficient training
and inference, the determinant of the Jacobian ∂fϕn

∂hn
needs to be

computed efficiently and tractably. Based on the affine coupling
layer proposed in [40], [41], we design our conditional affine
simulating layer to provide a simple and powerful strategy for
building an easily invertible and fastly computing flow layer.
In contrast to the traditional affine coupling layer, our proposed
affine simulating layer mixes the conditional encoding u and la-
tent featurehn with a nonlinear function fϕn. In this way, a more
adequate information aggregation from log-intensity change to
the flow branch is achieved. The detailed affine simulating layer
is conclusively expressed as follows,

hAn+1 = hAn,hBn+1 = hBn + fϕn(hAn; gϕ(E; I)), (5)

where hAn, hBn are divided from hn in the channel dimension.
Note that fϕn can represent an arbitrary neural network without
influencing the invertible and bijective of the flow layer. Further-
more, the Jacobian of (5) is triangular, with a simple determinant
computation result (| det ∂fϕn

∂hn
| = 1 in our work).

D. Optimization Objectives

Our approach for invertible event generation constructs a
mapping that specifies a correspondence between the event
representation E and event parameters P. The total optimization
process contains two directions: The forward pass of our invert-
ible takes event representations and intensity change encoding
features as input and produces the parameter values. Otherwise,
inputting parameters and intensity code, the reverse pass aims
at recovering realistic event data. The details of loss functions
and training strategy are discussed as follows.

1) Mapping From Event to Parameter: As discussed in
Section IV-C, the proposed conditional affine simulation needs
intensity change information as guidance to estimate an accurate
mapping fϕ from event spaceE to parameter spaceP. To achieve
this, we utilize conditional loss and parameter loss to guide the
mapping from event to parameter.

Conditional Loss: It is easily observed that events often occur
sparsely in real scenes, which means the intensity change of
each pixel is slight and most of the intensity change ground truth
label is zero. In other words, the training samples of the intensity
encoder are imbalanced. To address the problems, we conduct
bi-directional training with Quality Focal Loss, widely used in
object detection [48], [49], to optimize our intensity encoding
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network.

LI = − α||σ1(gϕ)− Igt||β · [Igt log σ1(gϕ)

+ (1− Igt) log(1− σ1(gϕ))], (6)

where Igt is the intensity change ground truth, and we limit it to
the range of 0 ∼ 1 with a linear scale factors log255 e. σ1 is the
sigmoid function, and we setα = 1 andβ = 2 in our experiment.

Parameter Loss: Due to the event parameters (contrast thresh-
old and shot noise rate) are usually close to zero, we introduce
L1 Charbonnier loss to optimize our network.

LP =
√

λ2||σ2(fϕ(E, I))− Pgt||2 + ε2, (7)

where Pgt is the ground truth parameters, and ε = 1 · 10−3 in
our experiment. The existence of ε in the above function makes
the gradient in the backpropagation not too small when the
difference of parameters is close to zero. σ2 is the tanh function
to limit the value in the parameter space (−1, 1). λ = Nnow

Ntotal
is

the confidence weight of the predicted value, which is decided
by the event number of current sample Nnow and the total event
number of the current batch Ntotal.

Forward Flow Loss: We follow [44] to train our network
by minimizing the negative log-likelihood (NLL) LF. The loss
contains two parts: the log-determinant of the Jacobian and the
negative log-likelihood to a simple distribution, as shown in (8).

LF = −
L−1∑
i=0

logPz(Squeeze(fϕKi
(E; I)))

−
N−1∑
n=0

log
∣∣∣det ∂fϕn

∂hn
(hn; gϕ(E; I))

∣∣∣, (8)

where L is the level number of our flow network, and K is the
number of flow steps for each level. Squeeze(·) operation is used
to half the feature in the channel dimension. We constrain half of
the output from the Squeeze(·) operation to a simple distribution
Pz (e.g., Gaussian) with negative log-likelihood.

2) Mapping From Parameter to Event: To perform the re-
verse mapping f−1

ϕ from parameter space to event space, we de-
sign an event representation loss that is inspired by the event dis-
tribution prior. The reverse mapping can be effectively achieved
based on event representation loss, flow loss, and conditional
loss.

Event Representation Loss: As discussed in Section III, the
events can be classified into two categories: noise events and
others. To precisely model two kinds of events, we consider
utilizing different losses to handle them. In detail, for noise
events, we consider the distribution of noise as a simple dis-
tribution (e.g., a Gaussian distribution) and utilize the negative
log-likelihood (NLL) between the training sample pairs to opti-
mize the network. For other events, we choose l1 Charbonnier
loss to supervise the network. Moreover, we observe that inten-
sity change sharply often occurs around the edges of moving
scenes. Therefore, a multi-scale loss is proposed to optimize the
network, as shown in Fig. 9.

LE =
∑
m∈M

[(1− γ)Ll1c(σ3(m)) + γLnll(σ3(m))], (9)

Fig. 9. Proposed event representation loss which partitions feature into multi-
scale local patches and weights them by edge motion attribute. After that,
different patches are handled with weighted L1 Charbonnier loss and negative
log-likelihood loss.

where Ll1c denotes the l1 Charbonnier loss, Lnll denotes the
NLL loss, and σ3 is the ELU function. The generated event
representations are partitioned into different size local patches,
M is the set of local patches. For each local patch m, we
follow [50] to analyze the edge strength of the patch with its
corresponding image gradients. Such attribute is tightly related
to scene edges, and we employ it as the weights of two kinds
of loss. For example, if there is no intensity change in a patch,
the events in this patch are mainly generated from noise. Then
we set a large weight to utilize NLL loss to constrain the event
number in this patch.

Inverse Flow Loss: Similar to the forward process, we train
the reverse mapping f−1

ϕ with NLL loss LF′ similarly. Different
from (8), in each squeeze step, we should sample half of the
latent variables from a simple distribution (e.g., standard normal
distribution). There is no need to compute these parts of loss.
We only require to compute the log-determinant for each flow
step fϕn

, as shown in (10).

LF′ = −
N−1∑
n=0

log
∣∣∣det ∂f−1

ϕ n

∂hn
(hn; gϕ(E; I))

∣∣∣. (10)

3) Bidirectional Training: Loss Weight Adaption: Because
the distribution of the event stream is usually unbalanced
(e.g., the event density is mainly related to scene texture and mo-
tion), the loss may vary extremely with different event streams,
which causes the training process of the invertible network to
be difficult. Instead of training with a set of fixed weights,
we propose to balance the effect of each loss into the same
magnitude to effectively train our network. In the experiment,
each loss value is normalized to 0 ∼ 10. For example, if a loss
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is 2.3× 103, we adjust it to 2.3 to avoid the whole network
converging to a local optimum prematurely.

Training Details: Our network is trained in both forward and
inverse directions via Lforward and Linverse, which are defined as:

Lforward = ω1LI + ω2LP + ω3LF,

Linverse = ω1LI + ω2LE + ω3LF′ . (11)

During the training process, we use a patch size of 64× 64,
Adam optimizer with warmup strategy in the first 10 epochs.
Then, the learning rate increases to 1 · 10−4, which decreases
via cosine annealing and reduces to zero after 300 epochs. Our
network takes about 3 days to train on a single NVIDIA GTX
1080ti GPU.

E. Parameter-Event Paired Data Generation

Paired Data Generation for Training Phase: Training the
proposed invertible network needs a large amount of event
and parameter data. Formally, we define the event streams as
ES = {E1, . . . ,ET }, the corresponding high framerate inten-
sity change as IS = {I1, . . . , IT }, and the corresponding event
camera parameters as PS = {P1, . . . ,PT }. Our goal is to gen-
erate a large dataset of parameter-event pairs {ES , IS ,PS}.
However, there is not exist such large-scale event dataset that
have ground-truth parameters and intensity value together. In our
work, we train the network using synthetic events by generating
random parameters to simulate extensive event streams across
various scenes.

We use the event simulator V2E [14] to generate events with
the rendering video sequences and the given simulation param-
eters. To render a video, we first sample one or multiple fore-
ground images and a background image from the unlabeled sub-
set of the MS COCO dataset [51]. Then, we crop the foreground
objects from the corresponding annotated instance masks. We
set a synthetic motion trajectory for each foreground object and
the background image, which allows them to translate, scale, and
rotate in a 2D plane with different speeds. Finally, we warp those
foreground objects and the background image with their motion
trajectories, and render the video sequence at a high framerate
(1000 fps). During generating the events, we sample a different
set of ON and OFF event parameters (i.e., contrast threshold and
temporal event noise rate) for each rendering video sequence to
enrich the training data. For the contrast threshold, we sample
it according to a normal distribution with mean values from 0.1
to 0.5 and a standard deviation of 0.15. For event noise rate, we
define it as follows:

ηON = ((F− 1)×N01(I) + 1)× R(θON),

ηOFF = ((F− 1)×N01(I) + 1)× R(θOFF). (12)

where I denotes the light intensity. Similar to [14], (12) de-
scribes a linear decreasing process of noise with the intensity I.
N01 is the normalization function, which normalizes the I into
(0, 1]. R(·) is defined as the relationship between noise event
rate η and the contrast threshold θ. In our simulation process,
we set R(θ) = 4

90θ−5 to constrain it in the range 0.1 to 1. F is
the noise reducing factor in bright parts, and we set F = 0.25 as
recommended in [14].

Asynchronous Event Stream Generation in Inference Phase:
In the inference phase, the proposed network can estimate op-
timized parameters, including contrast threshold and temporal
noise rate. Compared to other parameter estimation methods,
such as [21] and [22], our estimated parameters are compatible
with V2E [14] by replacing the corresponding components. In
this way, we can utilize V2E [14] with our estimated parameters
to generate asynchronous event stream readily. For example,
V2E initials the contrast threshold from a Gaussian distribution
with the given mean and variance. We adopt the initial value of
each pixel with our estimated thresholds. For the noise genera-
tion, we set the original temporal noise rate and leaky noise rate
to zero. Note that our event noise rate has contained temporal
noise and noisy events triggered by leakage current and dark
current. Thus, the temporal noise is directly added to the event
stream in V2E. For hot pixels, we follow V2E to minimize the
contrast threshold to 0.01 to prevent too many hot pixel events.

V. EXPERIMENT

A. Experimental Settings

In our experiments, we evaluate our invertible network on
three different dataset settings, including a synthetic dataset,
three public datasets, and our real captured dataset. Both pa-
rameter estimation (contrast threshold and temporal event noise
rate) and event stream generation tasks are evaluated on the
above datasets.

1) Datasets: Synthetic Dataset: First, as proposed in Sec-
tion IV-E, we generate 300 event sequences with different pa-
rameters for training and 30 sequences for evaluating the validity
of our network. We refer this dataset as the synthetic dataset, in
which we can easily get a group of parameters for each event
stream. The parameter-event pairs provide bi-directional ground
truths, which ensure the parameter estimation performance can
be evaluated quantitatively.

Public Dataset: To effectively evaluate the quality of the
generated event stream, we conduct experiments on IJRR [52],
MVSEC [53], and EVIMO2v2 [54] datasets. The former two
datasets are widely used in event-based downstream tasks (i.e.,
video reconstruction [16], [20], [38] and optical flow estima-
tion [9], [16], [20]). Both of them contain minutes to hours
of event streams with corresponding video frame sequences,
which are captured by real event cameras. The EVIMO2v2 [54]
dataset comprises event streams acquired by the Samsung Gen3
sensor, along with corresponding image sequences captured by
the Flea3 camera. We select 21 sequences with high-quality
reference images as our test set. The details of the selected
sequences can be found in supplementary materials. In our
experiment, we test the video reconstruction and optical flow
estimation performances by training related models on our
generated event data and testing on these datasets. Note that
our generation model is trained based on the training set of the
datasets.

Real Captured Dataset: Moreover, in order to verify the
generalization and robustness of our invertible network, we
further conduct parameter estimation experiments on the real
captured dataset. We capture several groups of event streams
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in different intensity conditions via different event cameras
(DAVIS346 and CeleX5). The experiment on the real capturing
events can future demonstrate the advantage of our proposed
approach.

2) Evaluation Metrics: Our invertible network aims to es-
timate precise parameters and generate realistic event streams
to improve the model training in downstream tasks. In our ex-
periment, we evaluate our network from two aspects: parameter
estimation and event generation.

Parameters Estimation: For parameters estimation, we eval-
uate the accuracy of contrast thresholds and noise rate, respec-
tively, via Mean Absolute Error (MAE) on multiple datasets.
To the best of our knowledge, there are only three statisti-
cal methods (ECC [22], S2R [16], JAER [21]) and only one
deep-learning model (LGAN [20]) in literature that can estimate
event contrast threshold, while [14] and [30] are the only two
methods that are able to model the noise rate under different
intensity.1

Event Stream Generation: In order to validate the perfor-
mance of event stream generation, we follow the evaluation
protocols of recent work [16], which evaluates the simulation
methods by training the downstream task model with the sim-
ulated event data. Similar to [16], we evaluate our network on
two tasks: event-based video reconstruction and optical flow
estimation. We choose E2V [38] network as the baseline video
reconstruction model to train and evaluate the video recon-
struction quality with three metrics: Mean Square Error (MSE),
Structural Similarity Index (SSIM), and the perceptual metric
LPIPS [55]. Note that we evaluate all reconstruction results of
each method in the log domain instead of the linear domain to
perform the advantage of event-based video reconstruction in a
high dynamic range. Meanwhile, EV-FlowNet [9] is employed
as the baseline optical flow estimation model to train, and Flow
Warp Loss (FWL) [16] is used to measure the quality of optical
flow. For a fair comparison, we train E2V and EV-FlowNet with
the same settings as [16].

B. Comparisons of Parameters Estimation

In this section, we validate the performance of the parameters
estimation, including contrast threshold estimation and temporal
noise rate estimation. We conduct experiments on synthetic
dataset, public dataset, and real capturing dataset. We can get
the parameters labels for synthetic dataset from their events gen-
eration configure files. Meanwhile, for the real-world datasets,
we can statistics the corresponding parameters by controlling
the captured scenes (as in Section III-B) to produce ON events,
OFF events, or noise events, respectively.

Thresholds Estimation on Synthetic and Real Captured
Datasets: Table III provides a summary of the quantitative

1We evaluate the accuracy of contrast thresholds and noise rate via MAE =
1
Ns

1
Nf

1
H·W

∑Ns

i=1

∑Nf

j=1

∑
p∈PH×W |yi − ŷpi,j |. In a dataset with Ns

sequences, for each event sequence i with Nf frames and resolution ofH ×W ,
we first calculate absolute value error between the predicted value ŷpi,j and
ground true value yi for each pixel p of each frame j. Then the Mean Absolute
Error (MAE) for overall dataset is used as a measure of the accuracy of contrast
threshold and noise rate estimation.

TABLE III
CONTRAST THRESHOLD ESTIMATION RESULTS ON SYNTHETIC AND REAL

CAPTURED DATASETS

TABLE IV
NOISE RATE ESTIMATION RESULTS ON DIFFERENT EVENT CAMERAS

results for our framework compared with four related contrast
threshold estimation methods (ECC [22], S2R [16], JAER [21],
and LGAN [20]) on both synthetic and real captured datasets.

For the synthetic dataset, as described in Section V-A1, we
evaluate the generated thresholds using ground truth provided
by the simulator across 30 synthetic sequences. In the case
of the real captured dataset, consistent with the settings in
Section III-B, we employ a CeleX5 camera to capture 12 event
sequences with varying sensor control parameters (i.e., different
contrast thresholds). The contrast threshold for each pixel is de-
termined by calculating the light intensity change divided by the
number of events. The total statistics, obtained by counting the
threshold of each pixel, serve as the ground truth for quantitative
comparison.

In the metric of MAE, the proposed approach achieves bet-
ter accuracy both in positive contrast θON and negative θOFF

contrast threshold estimation on both synthetic and real cap-
tured dataset. In particular, our network can estimate accuracy
parameter results in once forward computation instead of the
repeated iteration inference process as S2R [16] and JAER [21].
The invertible framework makes our network can effectively
estimate the mapping from event space to parameter space, thus
achieving better results. Moreover, compared with LGAN [20]
that needs to fine-tune the network for different target domains,
our invertible network can adapt to various domains without
re-training or fine-tuning. To sum up, the results on MAE
metric demonstrate that our network has better generalization
than other methods. More experimental results on synthetic
and real captured datasets can be found in supplementary
materials.

Noise Rate Estimation on Real Captured Dataset: In Table IV,
we compare the noise rate estimation results with V2E [14] and
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Fig. 10. Noise rate estimating results of CeleX5 data in different intensity and contrast thresholds. The abscissa is the luminance (×100lux) and the ordinate
is the noise event rate (Hz). The red line and blue lines represent the ON and OFF event noise rate, respectively. SCP is a DVS parameter, which is related to the
contrast thresholds. Best viewed in electronic version.

Fig. 11. Noise rate estimating results of DAVIS346 data in different intensities.
The abscissa is the luminance (×100lux), and the ordinate is the noise event
rate (Hz). The pink and blue lines represent the ON and OFF event noise rates,
respectively. Best viewed in electronic version.

DVS-Voltmeter [30] on two real datasets captured by CeleX5
and DAVIS346, respectively. V2E designs an event noise model
to estimate noise based on the light intensity and contrast thresh-
old, and uses the estimated noise level to generate event streams.
In this experiment, we can directly use the temporal noise model
of the V2E simulator to predict the noise rate values of this
method. DVS-Voltmeter simulator [30] generates event streams
by calibrating with the internal parameters of the DAVIS346
camera. Its noise function has no explicit expression. We can
generate noise events by inputting the intensity obtained by
CeleX5 into this simulator, and calculate the temporal noise
through the generated noise events. Moreover, DVS-Voltmeter
only calibrates the the parameters of the DAVIS346 camera,
which does not apply to CeleX5. Thus we only test this method
on DAVIS346. The MAE metric results on the real captured
dataset from two event cameras are shown in Table IV, each of
which contains various luminance. As shown in Table IV, our
proposed approach can obtain more precise noise rate estimation
on different cameras.

In Fig. 10, we show the noise rate estimation results under
different luminance and contrast thresholds. The experiment is
conducted on the real event dataset captured by the CeleX5
camera. The estimated noise-luminance curves shown in Fig. 10
are similar to those of Fig. 5, which proves the proposed network
can effectively model the relationship between noise rate and
luminance/contrast threshold.

Furthermore, the noise rate estimation results on DAVIS346
are shown in Fig. 11. The left figure shows the statistical values
(ground truth), and the right one is the estimated noise rate of
our network. The similar curve between statistics and estimation
values shown in Figs. 5, 10, and 11 on two different event
cameras demonstrates the realism and reliability of our network.

C. Comparisons on Downstream Tasks

To demonstrate the effectiveness of our network, we conduct
experiments on downstream tasks. Table V summarizes the
quantitative comparison results of event-based video reconstruc-
tion on IJRR [52], MVSEC [53], and EVIMO2v2 [54] datasets,
respectively. The original E2V [38] is trained on the simulated
events and optical flow. To compare the performance of different
event generation methods, we utilize the generated event stream
(GE) to train the E2V model and assess the performance of
the reconstructed image. Our network demonstrates significant
improvements in SSIM compared to the image reconstructed
from raw events, indicating minimal distortion of scene struc-
tures. Furthermore, when compared to other event simulation
pipelines, our reconstruction results outperform them across all
metrics. Fig. 12 shows the video reconstruction results generated
by different approaches. The results of the original E2V and
LGAN present indistinct details on edges, while the results of
S2R and EGAN present distorted local details and artifacts. The
reconstruction model training on our generated event streams
performs better on the details of edges and the contrast, which
contains abundant details and a high dynamic range.

In addition, we conduct the optical estimation experi-
ment on three public datasets: IJRR [52], MVSEC [53], and
EVIMO2v2 [54] datasets. The results of different methods are
summarized in Table VI. We use FWL metric, as defined in [16],
where a higher value indicates better performance. We utilize the
generated event stream (GE) to train the EVFLOW [9] model and
assess the performance of the estimated flow. Our proposed net-
work outperforms other approaches on all three public datasets,
significantly improving the performance compared to both the
raw events and other simulation pipelines. As shown in Fig. 13,
the optical flow visualization results and the image of warped
events intuitively demonstrate the improvement of our generated
events.

In summary, the results of downstream tasks demonstrate the
proposed network can generate better domain-adapted event
streams, which boosts the state-of-the-art performances on
event-based video reconstruction and optical flow estimation up
to 18.6% and 6.4%, respectively. Detailed video reconstruction
and optical flow estimation results for each sequence in various
datasets can be found in the supplementary materials.

D. Analysis and Discussion

1) Ablation Study. Network Depths: In order to study the
effect of network depth, we set different numbers of flow steps
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TABLE V
VIDEO RECONSTRUCTION RESULTS TRAINED WITH DIFFERENT EVENT SIMULATION PIPELINES ON DIFFERENT DATASETS

Fig. 12. Video reconstruction results of different approaches on IJRR [52], MVSEC [53], and EVIMO2v2 [54] datasets. The APS images are taken as ground
truth. Best viewed with zoom.

TABLE VI
OPTICAL FLOW ESTIMATION RESULTS TRAINED WITH DIFFERENT EVENT

SIMULATION PIPELINES ON DIFFERENT DATASETS

(K values) for each level. The parameter estimation results on our
real captured event data are shown in Fig. 14. The results show
that our network achieves the best performance with 16 flow
steps. To investigate the impact of various flow steps on down-
stream tasks, we conduct experiments to assess the performance
of video reconstruction and flow optical estimation. The results
presented in Table VII demonstrate that our network achieves
optimal performance when configured with 16 flow steps. With

Fig. 13. Optical flow estimation results generated by different approaches.
Note that the more precise of optical flow results, the edge thinner for image of
warped events (IWE). Best viewed with zoom.

fewer flow steps, the features of the event stream and parameter
are difficult to be effectively extracted, thus causing performance
degradation. In contrast, more flow steps may lead to gradient
disappearance of backpropagation in the training phase since the
event stream is usually sparse.

Loss Functions: As shown in Tables VIII and IX, we study
the effect of different losses as proposed in Section IV-D. The
conditional loss LI is essential for supervising our network in
the training phase. Except for LI, we analyze different settings
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Fig. 14. Parameter estimation performance on different flow steps settings.
Best viewed in electronic version.

TABLE VII
ABLATION STUDY OF DIFFERENT FLOW STEPS ON REAL DATASET. BEST

RESULTS ARE HIGHLIGHTED IN BOLD

TABLE VIII
ABLATION STUDY OF LOSS ADAPTION SCHEME ON SYNTHETIC DATASET

TABLE IX
ABLATION STUDY OF LOSS ADAPTION SCHEME ON REAL DATASET

of LP, LF, and LE. As shown in the table, without the forward
flow loss LF and the inverse flow loss LF′ , our network cannot
converge due to the lack of correct optimization direction. Mean-
while, both LF and LE can improve the parameter estimation
results compared with training network using LP alone. By
introducing the proposed losses, the performance of our network
can be further boosted. Furthermore, the results presented in the
last row of Table VIII and IX demonstrate that our adaptation
scheme (as described in Section IV-D3) effectively enhances the
performance of event generation across various tasks. The intro-
duction of weight adaptation also prevents gradient explosion in
practical applications.

Fig. 15. Qualitative results of intensity change estimation. Best viewed in
electronic version.

2) The Necessity of Intensity Change Estimation: In
Table XI, we compare the intensity change estimation results of
our proposed conditional encoder network with the recent works
(i.e., AKF [56]) on IJRR [52] and EVIMO2v2 [54] datasets. We
utilize the difference between adjacent APS frames as reference
images to measure the accuracy of intensity change estimation.
To achieve this, we compare the results obtained from both the
AKF algorithm and our network with these reference images
and subsequently calculate the mean absolute error (MAE). The
visualization results are shown in Fig. 15. In camera motion
scenes from IJRR dataset, the events occur across the whole
screen, posing a challenge in distinguishing noise events from
those triggered by actual intensity changes. In object motion
scenes from EVIMO2v2 dataset, the events mainly occur in
localized regions. In these areas, the potential for significant
errors in intensity change estimation is high. However, the visual
comparison results demonstrate that our conditional encoder
network exhibits robustness to event noise and performs well
even under conditions involving numerous events. Our condition
encoder network can effectively extract high-quality scene inten-
sity information, which helps guide the bidirectional mapping
of our invertible network.

3) The Event Representation With Various Parameters: Ben-
efiting from the reversible property of our invertible network,
the reliable event streams of diverse scenes can be effectively
generated. In fact, our invertible network builds a bidirectional
mapping between the event representation and event parameters.
Our network can generate controllable event representations
based on the inverse mapping from the event parameters to rep-
resentations. Fig. 16 shows the generated event representations
with different parameters. The original event representation and
the representation generated with our estimated parameters are
shown in Fig. 16(a) and (d), respectively. By adjusting positive
contrast thresholds +θON, negative contrast thresholds −θOFF,
and the contrast threshold −θON and +θOFF, we can obtain dif-
ferent event representations. The results show that our invertible
network has the potential to flexibly and directly generate event
representation according to different scenarios. Furthermore,
this experiment provides a visual demonstration of the ability
to generate events that align with the target domain by inversely
estimating the parameters within the framework. It illustrates
that manual adjustments to parameters like threshold and noise
can be utilized to modify the characteristics of the generated
events. These findings affirm that our method excels not only
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TABLE X
GENERALIZATION CAPABILITY ON DIFFERENT EVENT CAMERAS

TABLE XI
THE QUANTITATIVE RESULTS OF CONDITIONAL INTENSITY CHANGE ENCODER

Fig. 16. Event representation generation results with different parameter
settings. Best viewed in electronic version.

in event generation but also holds great potential for various
applications, including event representation, event denoising,
and related tasks.

4) Generalization Capability on Different Event Cameras:
To evaluate the generalization capability of our proposed
method across different event cameras, we conduct experi-
ments using real datasets captured with various event cam-
eras: DAVIS240 [2], DAVIS346 [25], and CeleX5 [24]. The
sequences from DAVIS240 [2] and DAVIS346 [25] are ob-
tained from publicly available datasets, namely IJRR [52]
and MVSEC [53], respectively. Additionally, we capture event
streams using the CeleX5 [24] camera specifically for evaluation
purposes. We follow [22] to utilize direct integrated images
to evaluate the per-pixel contrast threshold calibration perfor-
mance. This involves comparing the estimated intensity images
with the referenced ground truth intensity image. We compare
our framework against four other methods: ECC [22], S2R [16],
JAER [21], and LGAN [20]. The results of these experiments are
presented in Table X, clearly demonstrating that our proposed
approach outperforms the other methods across all three camera

types. This finding highlights the superior generalization ability
of our network when applied to different event cameras.

VI. CONCLUSION

We have presented a novel event-based invertible neural net-
work for reliable event generation. By introducing the condi-
tional normalizing flow, the proposed network can be trained
end-to-end to learn a bidirectional mapping between event space
and parameter space. Our network is totally invertible, which
can learn the inherent relationship of events and parameters.
To take the advantage of the intensity prior, we propose an
intensity-guided conditional affine simulation, which can lead
to a better alignment of the features. Moreover, multiple losses,
such as event representation loss and flow losses, are proposed to
ensure the network can be effectively trained in both forward and
inverse directions. Extensive experiments demonstrated that our
invertible network is extremely helpful to the event generation
task. We further show that the proposed framework generalizes
well to multiple scenarios and event cameras without re-training
or fine-tuning, while performing significantly better than recent
state-of-the-art methods. Overall, it is promising to study the
correlations between the event distribution and its parameters
to generate reliable event stream. Moreover, extending the in-
vertible network to other event-based vision tasks (e.g., event
representation estimation, intensity reconstruction, and event
denoising) is also an interesting direction worthy to be explored.
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