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ABSTRACT
Generalizable person re-identification aims to achieve a well gen-
eralization capability on target domains without accessing target
data. Existing methods focus on suppressing domain-specific in-
formation or simulating unseen environments by meta-learning
strategies, which could damage the capture ability on fine-grained
visual patterns or lead to overfitting issues by the repetitive training
of episodes. In this paper, we revisit the stochastic behaviors from
two different perspectives: 1) Stochastic splitting-sliding sampler.
It splits domain sources into approximately equal sample-size sub-
sets and selects several subsets from various sources by a sliding
window, forcing the model to step out of local minimums under
stochastic sources. 2) Variance-varying gradient dropout. Gradi-
ents in parts of network are also selected by a sliding window and
multiplied by binary masks generated from Bernoulli distribution,
making gradients in varying variance and preventing the model
from local minimums. By applying these two proposed stochastic
behaviors, the model achieves a better generalization performance
on unseen target domains without any additional computation costs
or auxiliary modules. Extensive experiments demonstrate that our
proposed model is effective and outperforms state-of-the-art meth-
ods on public domain generalizable person Re-ID benchmarks.
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1 INTRODUCTION
Person re-identification (Re-ID) aims to retrieve images of the
same person identity captured by non-overlapped cameras in a
gallery when given a query image. For decades, advanced deep
learning methods [11, 31, 33, 52] and proposals of large person
datasets [38, 46–48] greatly boost the development of supervised
person Re-ID tasks. However, these supervised methods suffer from
significant performance degradation when directly applied in un-
seen domains, owing to the strong inductive biases in learning
systems. To reduce these biases, unsupervised domain adaptation
methods [5, 44, 53] are proposed to exploit unlabeled data in target
domains to further finetune these well-trained models. However,
when applying to the real-world applications, the target domain
knowledge is usually unknown, e.g., surveillance videos with dif-
ferent lightness or occlusions, existing domain adaptation methods
fail to handle all circumstances with the various change of un-
known data. To tackle this challenge, researchers resort to the task
of Domain Generalizable (DG) person Re-ID whose goal is to train
a model with a strong generalization capability on unseen target
domains by only using labeled source domain data.

Different from other domain generalization tasks on common
data, Re-ID datasets have strong similarities in their distributions
(e.g., head-body-leg from top to bottom), leading to severe over-
fitting in the learning process. Hence in the domain generalizable
Re-ID task, one intuitive and prevailing idea is to prevent the model
from over-fitting in source domains. Motivated by this idea, most of
existing research concentrates on two lines of techniques: domain-
specific information suppression and meta-learning strategies. For
example, Jin et al. [14] utilized an instance normalization operation
to eliminate style discrepancies among different identities, enhanc-
ing the identity-irrelevant features with the proposed restitution
module. In [3, 29, 45], meta-learning strategies were adopted to
simulate the process of model inference during training stages to
reduce domain shifts between training and testing. Besides these
methods, Dai et al. [4] combined these two lines of techniques to
extract source-discriminative characteristics and distill irrelevant
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Figure 1: The motivation of our proposed method. a) On mul-
tiple sample-imbalanced source domains, one model prefers
to learn characteristics from sources with majority samples
and neglects the minority, hindering the model from extract-
ing generalizable representations. b) A common way is to re-
balance sample size in each source, making the model learn
an ’average’ representation that is only fitting to sources. c)
and d) Taking stochastic disturbances in training stage, the
model is forced to jump out of current local minimums and
search for a more generalizable solution in feature spaces.

information in a meta-learning manner. Although these two lines
of techniques show their effectiveness in generalizable representa-
tions, major deficiencies behind these ideas are still under-explored:
(1) the fine-grained recognition especially re-identification heav-
ily relies on low-level patterns, including colors and textures, but
these patterns are easily damaged by the domain-specific feature
suppressing procedure; (2) although meta-learning methods tend to
improve the generalization ability of training model by evaluating
its performance on pseudo test sets. These pseudo data still come
from the known source domain and also lead to over-fitting issues
by the repetitive training of hundreds of episodes.

Keeping these concerns in mind, a question naturally arises: how
to prevent the model stuck in over-fitted local minimums without
additional costs and loss of useful information? In this paper, we
propose to revisit the domain generalizable person Re-ID from two
distinctive views: 1) the data distribution in source sampling and
2) the gradient back-propagation in training process. Numerous
researches [7, 9, 32] have shown that learnable models incline to be
bias to majority classes under the data-imbalance situation. Guid-
ing by this finding, if we take one domain as a class, a domain
generalization model tends to learn characteristics of domains with
majority proportions of data and fails to keep informative repre-
sentations of minority domains, as shown in Fig. 1 a). The most
intuitive way to alleviate this issue is to re-balancing samples of
each source domain. However, this training manner only forms
an averaged representation of known sources but could not help
the model out of over-fitting issues. Thus we propose to take the
advantage of stochasticity by the nature of dataset itself, promoting

a model to step out of local minimums owing to the instability
of sampled data. We develop a novel stochastic splitting-sliding
sampler to re-balance source domains and take stochasticity into
the model with a sliding-window behavior. There are two typical
steps in the proposed stochastic splitting-sliding sampler: 1) it first
splits each source domain into several subsets with approximately
equal sample sizes and then orders these subsets into a queue where
each subset and its neighborhoods belong to different sources; 2) a
sliding window is then taken to select subsets whose sizes are less
than the number of domains in source data. The sliding-window
behavior guarantees that domains in each adjacent episode are
various, forcing the model to jump out of the local minimum in
current sources, which can be found in Fig. 1 d).

Expect for the stochastic behavior in the data view, we revisit
another stochastic technique in the optimization process: dropout.
Vanilla dropout [30] is effective to suppress the over-fitting is-
sue, but applying a dropout layer between learnable blocks would
change network structures and further harm the pre-training knowl-
edge. To solve this problem, several works [2, 35] propose to drop
the gradient in all layers with a probability generated by a strat-
egy, e.g., Bernoulli distribution. However, it would lead to severe
problems to directly drop out gradients in a 𝑝 probability Bernoulli
distribution: if the model has been already stuck in local minimums
in Fig. 1 a) and b), applying dropout to gradients of all layers only
changes the variance of 𝑝 times. Besides theoretical analyses, we
propose a novel variance-varying gradient dropout with sliding
windows of several layers, keeping the stochasticity in learning
process. In this dropout, we first divide the backbone into several
groups, e.g., taking blocks in a stage of ResNet as a group. Then
gradients of the groups selected with the sliding window are multi-
plied by binary masks generated by a Bernoulli distribution. By our
proposed variance-varying gradient dropout, the gradients of the
model can vary constantly, further to achieve generalization capa-
bility as in Fig. 1 c) and d). Our proposed method does not require
any additional computation costs or auxiliary training modules and
achieves the state-of-the-art performance in domain generalizable
person re-identification tasks.

Our main contributions in this paper are three-fold:
1) In the view of data distribution, we design a novel stochastic

splitting-sliding sampler to split imbalanced sources into several
subsets with approximately equal sample sizes and utilize a slid-
ing window to select subsets in different sources in each training
episode, preventing the model from preferring to source domains.

2) In the view of optimization, we propose a variance-varying
gradient dropout to set the variance of gradients in a constant
change state, promoting the model jump out of the local minimum.

3) We make theoretical and experimental analyses to reveal the
importance of stochastic training in generalization and conduct
extensive experiments to verify the superiority of the proposed
method on public domain generalizable person Re-ID benchmarks.

2 RELATEDWORK
2.1 Person Re-identification
Deep supervised person re-identification in a single domain have
gained a significant improvement for decades, including three main
components [43]: Feature Representation Learning [31, 33, 48, 50],
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Figure 2: Illustration of our approach. The pipeline consists of the network structure, stochastic splitting-sliding sampler and
variance-varying gradient dropout. The proposed sampler splits𝐾 source domains into several approximately equal sample-size
subsets and sorts these subsets in the condition (3) to form a circular queue. Then a sliding-window behavior is adopted to
select 𝐿𝑆 (< 𝐾) subsets in the queue from head to tail in 𝑇𝑆 steps to keep data from stochastic sources in two adjacent episodes,
preventing over-fitting in sources. The proposed gradient dropout divides the network into several groups and also takes a
sliding window in𝑇𝐺 steps to select 𝐿𝐺 groups. Gradients of these groups will multiply by a binary mask generated by Bernoulli
distribution with probability 𝑝 to keep gradient variance in a constant change state, helping to step out of local minimums.

Deep Metric Learning [11, 39, 41] and Ranking Optimization [28,
52]. Further to promote Re-ID methods to be applied in the real
world, unsupervised domain adaptation (UDA) methods are pro-
posed to eliminate domain gaps without labeling the target dataset
in recent years. The unsupervised domain adaptation can be roughly
categorized into two groups which are GAN-based transfer [5, 38]
and target domain supervision mining [44, 53]. In [38], PTGANwas
proposed to realize the style transfer between different domain im-
ages, aiming to bridge the domain gap. Unlike using GAN, Zhong et
al. [53] designed an exemplar memory to memory target domain
features with three invariance properties. For domain generalizable
person re-identification [1, 3, 4, 13, 14, 18, 22, 29, 34, 37, 54], it can
be trained only in the source domains and directly evaluate in un-
seen target domains. Song et al. [29] proposed Domain-Invariant
Mapping Network to learn domain-invariant features by utilizing a
hyper-network and memory bank. Inspired by the style variations
suppression of IN, Jin et al. [14] developed a Style Normalization
and Restitution module to learning a robust representation by elim-
inating the identity-irrelevant features. Choi et al. [3] combined
batch normalization and instance normalization by a learnable pa-
rameter, learned in a meta-learning manner. Different from the
above methods, we propose to adopt stochastic behaviors to avoid
over-fitting in source domains without any additional computation
costs or auxiliary training modules.

2.2 Domain Generalization
DomainGeneralization (DG) has attractedmore andmore researchers
in the past ten years. Domain-invariant representation learning [17,
21, 25, 26] and data augmentation [36, 42, 55, 56] are two main
methods in domain generalization. The crucial thought in domain-
invariant representation is to minimize the domain gap among

source domains, i.e., reducing the negative effect caused by do-
main shifts in the final representation. Data augmentation aims
to simulate various domain shift by augmenting the source data,
which makes the model avoid over-fitting in source domain charac-
teristics. Besides two mainstreams, researchers also explore other
DG methods, e.g., meta learning [16], casual matching [24], dis-
entangled representation [15] and adaptive methods [6]. For do-
main generalization, source domains and target domains are in
the same label space. However, the label spaces of unseen target
domains in generalizable person re-identification are completely
different from source domains. This means that preventing Re-ID
from over-fitting in source domains is more important than learning
domain-invariant features.

2.3 Gradient Dropout
Dropout [30] is a simple yet effective technique to prevent neu-
ral networks from overfitting by dropping out network units with
probability 𝑝 at the training time. In [2], Chen et al.designed a Grad-
Drop to balance gradients derivated by multiple losses in multitask.
Tseng et al. [35] applied the GradDrop method to meta learning
tasks and presented two Bernoulli and Gaussian dropout terms. In
this paper, we adopt gradient dropout in a sliding-window manner
to set gradients of different network layers in various variances,
ensuring that a model can step out of local minimums.

3 METHODOLOGY
3.1 Overview
In this section, we elaborate the pipeline of the proposed method
which is exhibited in Fig. 2 (a). In training stages of this general-
ization task, there exist 𝐾 source domains D = {D𝑘 }𝐾𝑘=1, where
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D𝑘 = {(𝑥𝑛
𝑘
, 𝑦𝑛
𝑘
, 𝑑𝑘 )}

𝑁𝑘

𝑛=1 includes 𝑁𝑘 image-identity pairs with do-
main label 𝑑𝑘 in the 𝑘-th domain. Firstly, we utilize the proposed
splitting-sliding sampler S to split each source domain into ap-
proximately equal sample-size subsets, where {D𝑖

𝑘
}𝑁

𝑘
𝑠

𝑖=1 represents
𝑘-th source domain is split into 𝑁𝑘𝑠 subsets. Then these subsets are
rearranged as a queue where each subset and its neighbors should
belong to different domains, and 𝐿𝑆 (< 𝐾) subsets are taken by a
sliding window in one episode, as illustrated in Fig. 2 (b). After a
minibatch of input is sampled, we feed the input into a backbone
F𝜙 followed by a classifier F𝜓 and compute gradients with back-
propagation. Keeping gradient update in various variance space, we
adopt a variance-varying gradient dropout G to divide gradients
of F𝜙 and F𝜓 into several groups and also adopt a sliding-window
behavior to mask gradient groupsW in the range of window with
a 𝑝 probability Bernoulli distribution, as shown in Fig. 2 (c).

3.2 Stochastic Splitting-sliding Sampler
Existing pioneer works have demonstrated that deep models in-
cline to keep memories of visual patterns from majority classes
which own most of training samples. This leads the trained model
to perform a high accuracy on majority classes but an inferior per-
formance on minority classes, damaging the generalization capabil-
ity. Taking a domain analogy to a class, total samples in different
source domains are seriously imbalanced, e.g., about 7,000 samples
in CUHK02 [19] and 36,000 samples in DukeMTMC-reID [51]. If we
directly combine data from multiple domains in a training episode,
the model would only remember characteristics of majority source
domains and forget minority ones. To alleviate over-fitting issues
from the perspective of data distributions, we resort to the stochas-
tic splitting-sliding sampler, typically consisting of two steps.

In the first step, source domains are divided into several subsets
by a split operation. We determine a subset size 𝑆𝑙 empirically,
which should be not greater than the minimal size of each domain.
In this manner, training samples of each source domain are split
into several subsets with 𝑆𝑙 samples in each. However, it is usually
infeasible to divide these datasets to the size of 𝑆𝑙 with no remainder.
If we promise a strictly equal sample-size subset, two commonways
are discarding the remainder or repeating samples to make up for
the lack. However, no matter which solution we take, it is sticky
to choose which samples to be discarded or repeated. The third
solution is to guarantee the size of first few subsets is equal to 𝑆𝑙
and the last subset includes all the remainder. Further to avoid only
a few in the last subset and keep all subset sizes as equal as possible,
we propose to utilize a rounding to compute an approximately equal
sample size 𝑆𝑘

𝑙
for the 𝑘-th source domain, computed by:

𝑆𝑘
𝑙
= ⌊ 𝑆𝑘

R(𝑆𝑘/𝑆𝑙 )
⌋, (1)

where 𝑆𝑘 is the size of the 𝑘-th source domain and R is a rounding
operation. After simple rounding, we can prevent the size of last
subset from becoming a outlier under the approximate equality of
𝑆𝑘 and 𝑆𝑙 . In the first step, balanced subsets {D𝑖

𝑘
}𝑁

𝑘
𝑠

𝑖=1 in 𝑘-th source

Algorithm 1: Training Scheme of our proposed method
Input: Source domains D = {D1,D2, . . . ,D𝑘 },pre-trained

parameters \F𝜙 ,hyperparameters 𝛼, 𝛽
Output: Trained parameters \F𝜙 , \F𝜓

1 Initialize classifier parameters \F𝜓
2 for 𝑘 = 1, 2, . . . , 𝐾 do

3 Split 𝑘-th source domain as 𝑁𝑘𝑠 subsets {D𝑖
𝑘
}𝑁

𝑘
𝑠

𝑖=1 //
Eq.(1)-Eq.(2)

4 end

5 Sort all subsets
⋃𝐾
𝑘=1{D

𝑖
𝑘
}𝑁

𝑘
𝑠

𝑖=1 followed by the condition (3)
to form a sorted set D′

6 Keep at most 𝐿𝑆 + ⌊𝑇𝑆2 ⌋ subsets from the same domain in
the tail of D′

7 Divide \F𝜙 and \F𝜓 to several groupsW
8 D′

𝑆
= 𝑆𝑊𝑆 (D

′
, 𝐿𝑆 ) // sliding operation in Sec 3.2

9 M′
= 𝑆𝑊𝐺 (W, 𝑝, 𝐿𝐺 ) // sliding operation in Sec 3.3

10 for 𝑒𝑝𝑜𝑐ℎ = 1, 2, . . . do
11 if epoch % 𝑁𝐺 == 0 then
12 M′

= 𝑆𝑊𝐺 (W, 𝑝, 𝐿𝐺 ,𝑇𝐺 )
13 end
14 Sample a mini-batch B from D′

𝑆

15 if data exhaustion then
16 D′

𝑆
= 𝑆𝑊𝑆 (D

′
, 𝐿𝑆 ,𝑇𝑆 )

17 end
18 Compute L𝐸 (\F𝜙 , \F𝜓 ,B)
19 𝑔 = ▽L𝐸 (\F𝜙 , \F𝜓 ,B)
20 𝑔

′
= 𝑔 · M′

21 \F𝜙 ← \F𝜙 − 𝛼 · 𝑔
′

F𝜙
22 \F𝜓 ← \F𝜓 − 𝛽 · 𝑔

′

F𝜓
23 end
24 return trained network parameters \F𝜙 , \F𝜓

domain are obtained, which can be defined by

D𝑖
𝑘
=


{(𝑥 (𝑖−1)𝑆

𝑘
𝑙
+𝑗

𝑘
, 𝑦
(𝑖−1)𝑆𝑘

𝑙
+𝑗

𝑘
, 𝑑𝑘 )}

𝑆𝑘
𝑙

𝑗=1 𝑖 < 𝑁𝑘𝑠

{(𝑥 𝑗
𝑘
, 𝑦
𝑗

𝑘
, 𝑑𝑘 )}

𝑁𝑘

𝑗=(𝑖−1)𝑆𝑘
𝑙

𝑖 = 𝑁𝑘𝑠
, (2)

where 𝑁𝑘 is the number of total samples in 𝑘-th source domain,
and 𝑁𝑘𝑠 is the number of subsets in 𝑘-th source domain and equal
to R(𝑆𝑘/𝑆𝑙 ).

In the second step, we develop a sliding window strategy 𝑆𝑊𝑆 to
prevent the model from over-fitting in source domains. After each
source domain has been split into several subsets with nearly the
same size in the first step, the next crucial problem is how to help
the model to jump out of the local minimum. As shown in Fig. 1
b), feeding re-balanced samples of different source subsets into the
model is effective to alleviate the preference for large-scale domains
and the optimal model is robust to source domains. However, our
key idea to solve domain generalizable Re-ID tasks is that one
model should achieve generalizable capabilities on unseen target
domains rather than robustness on source domains. The optimal
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solution in source domains is not suitable for unseen domains due to
large distribution discrepancies between source and unseen domain
targets. Thus it is necessary to apply stochastic disturbances for
break the model training from local optimal traps. For this intuition,
one feasible way is to select part of source domains in a training
episode. Various domains force the model to continuously search
for a more generalizable solution. Meanwhile, it is important to
avoid several domains rarely selected due to randomness. Hence we
propose to apply a sliding-window behavior in the ordered subset
circular queue. All split subsets ∪𝐾

𝑘=1{D
𝑖
𝑘
}𝑁

𝑘
𝑠

𝑖=1 are sorted according
to the 𝑖 , and the 𝑘 for subsets if 𝑖 is identical, defined as{

𝑃𝑜𝑠D′ (D𝑖𝑎) < 𝑃𝑜𝑠D′ (D
𝑗

𝑏
) 𝑖 < 𝑗 & ∀𝑎, 𝑏 ≤ 𝐾

𝑃𝑜𝑠D′ (D𝑖𝑎) < 𝑃𝑜𝑠D′ (D𝑖𝑏 ) 𝑎 < 𝑏
, (3)

where D′ is the sorted set and 𝑃𝑜𝑠D′ represents the position num-
ber ofD′ . Then this operation utilizes a sliding window with a size
of 𝐿𝑆 to select 𝐿𝑆 subsets from D′ . After samples of these subsets
are exhaustively enumerated, we move the sliding window forward
𝑇𝑆 steps, as shown in Fig. 2 (b). In the front of the queue, there are
approximately equal training samples in each selected source but
domains are various in two adjacent episodes. The source domain
without appearing in the last episode can force the model to jump
out of the over-fitting in sources, as shown in Fig. 1 d). Due to the
imbalance among source domains, subsets from the minority are
depleted and disappear in the tail of the queue. When the number
of rest domains is less than window size 𝐿𝑆 , there does not exist an
unseen domain in the next episode. However, sliding-window be-
havior still keeps the model in a stochastic state by setting𝑇𝑆 < 𝐿𝑆 .
When 𝑇𝑆 < 𝐿𝑆 , samples in 𝐿𝑆 −𝑇𝑆 subsets are reused and domains
which 𝐿𝑆 − 𝑇𝑆 subsets belong to hold the dominance. By careful
design, reused domains are different in most of episodes. Moreover,
if there exists a source domain that is much larger than the oth-
ers, it would lead to severe over-fitting phenomenon because only
subsets from this domain appear in the late training episode. To
solve the problem, we just keep at most 𝐿𝑆 + ⌊𝑇𝑆2 ⌋ subsets of this
domain in the tail of the queue and discard the rest, ensuring that
newly selected subsets in two continuous episodes are mainly from
different domains.

3.3 Variance-varying Gradient Dropout
Dropout [30] is a powerful stochastic behavior to alleviate neural
networks from over-fitting, which effectiveness has beenwidely ver-
ified. However, when the Dropout operation is inserted into amodel,
it usually changes the model structure and damages the pre-trained
knowledge. For downstream tasks, it brings a huge impact because
the pre-trained knowledge is crucial for the downstream tasks to
converge faster while achieving a generalization simultaneously.
To avoid losing this key knowledge, recent researches propose the
gradient dropout operations [2, 35], which apply dropout in the
gradient updating process:

𝑔
′
=M · 𝑔, (4)

where 𝑔 is original gradients yield from back-propagation, 𝑔
′
is

gradients after dropout andM is a binary mask generated by a
dropout strategy. For simplicity, we choose a Bernoulli distribution
with a probability 𝑝 as done in [30] to generate a binary mask.

In domain generalizable Re-ID task, our motif is to prevent the
model from over-fitting in source domains. If we directly mask all
gradients of the model with 𝑝 probability, it would not promote the
model to jump out of the local minimum in certain cases because
this gradient dropout behavior only makes the original gradient
variance multiplied by 𝑝 , proved as follows. In the optimization,
the purpose is to minimize the expected risk L𝐸 , defined as

L𝐸 = E(𝑥,𝑦) ∈D [l(F𝜓 (F𝜙 (𝑥)), 𝑦)], (5)

Lemma 1. When a model converges into a local minimum value,
the gradient 𝑔 derived by L𝐸 is approximately equal to zero, i.e.,
𝑔 ≈ 0.

Proof. From the definition of the local minimum, it is easy to
conclude that weights in the model tend to be stable and gradients
approach to be zero values.

Proposition 1. Let the binary maskM from Bernoulli distribution
with a probability 𝑝 and the new gradient 𝑔

′
=M ·𝑔, the expectation

E of 𝑔
′
approaches to be zero and the variance approaches to 𝑝 times

the variance of 𝑔, when the model traps into a local minimum value.
Proof. When the model reaches a local minimum during train-

ing, i.e., 𝑔 ≈ 0, the expectation E[𝑔] ≈ 0. For the binary maskM
independent of gradients, the expectation of 𝑔

′
is

limL𝐸→L∗𝐸 E[𝑔
′] = limL𝐸→L∗𝐸 E[M]E[𝑔]

= limL𝐸→L∗𝐸 𝑝E[𝑔]
= 0

, (6)

where L∗
𝐸
represents the local minimum loss.

Then the variance of 𝑔
′
can be defined as:

limL𝐸→L∗𝐸 𝑉𝑎𝑟 [𝑔
′] = limL𝐸→L∗𝐸 E[M

2𝑔2] − E2 [M𝑔]
= limL𝐸→L∗𝐸 E[M

2]E[𝑔2]
= limL𝐸→L∗𝐸 𝑝E[𝑔

2] − 0
= limL𝐸→L∗𝐸 𝑝 (E[𝑔

2] − E2 [𝑔])
= 𝑝𝑉𝑎𝑟 [𝑔]

.

(7)
Proposition 2. Let the binary maskM sampled from Bernoulli

distribution with a probability 𝑝 and the new gradient 𝑔
′
=
M·𝑔
𝑝 , the

expectation of 𝑔
′
approaches to be zero and the variance approaches

1
𝑝 times the variance of 𝑔 when the model traps into a local minimum.

Proof. Replace E[M] and E[M2] with E[M]𝑝 and E[M
2 ]

𝑝2
in the

proof of Proposition 1. Detailed proofs are elaborated in Appendix.
In a fixed variance space, the magnitude of the gradient is limited,

and the model cannot escape from local minimums, leading to a gen-
eralization degradation. Therefore, we propose to only apply gra-
dient dropout in several model layers, keeping the variance of the
gradient with constant change. As the stochastic splitting-sliding
sampler, we adopt a sliding-window behavior 𝑆𝑊𝐺 to achieve vari-
ous gradient variances. Firstly, backbone F𝜙 is divided into 𝑧 groups
according to several modules, e.g., blocks in a ResNet stage. Then
these groups and classifier F𝜓 are unified into a candidate sequence.
Before gradient update in each iteration, gradients of layers are
selected by a sliding window with the size 𝐿𝐺 , and multiplied with
a binary mask generated by Bernoulli distribution with a proba-
bility 𝑝 . After a training episode (𝑁𝐺 epochs), the sliding window
moves forward𝑇𝐺 step(s) in the group sequence to change gradient
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Table 1: Performance (%) comparisons with state-of-the-arts on DG Re-ID benchmarks.

Source Method
VIPeR PRID GRID i-LIDS

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

M+C2+
D+C3+
CS

DIMN [29] 51.2 70.2 76.0 60.1 39.2 67.0 76.7 52.0 29.3 53.3 65.8 41.1 70.2 89.7 94.5 78.4
MetaBIN [3] 59.9 78.4 82.8 68.6 74.2 89.7 92.2 81.0 48.4 70.3 77.2 57.9 81.3 95.0 97.0 87.0

DualNorm [13] 59.4 - - - 69.6 - - - 43.7 - - - 78.2 - - -
SNR [14] 52.9 - - 61.3 52.1 - - 66.5 40.2 - - 47.7 84.1 - - 89.9
RaMoE [4] 56.6 - - 64.6 57.7 - - 67.3 46.8 - - 54.2 85.0 - - 90.2
Baseline 56.9 73.4 80.0 64.6 59.2 81.7 89.3 69.6 43.0 64.0 73.1 53.2 77.0 92.2 96.7 83.7
Ours 61.5 77.3 82.9 69.2 74.4 91.7 96.4 81.6 49.9 70.0 78.6 59.6 80.7 95.7 97.7 87.2

M+D+
C3+MT

SNR [14] 55.1 - - 65.0 49.0 - - 60.0 30.4 - - 41.3 87.0 - - 91.9
RaMoE [4] 63.4 - - 72.2 56.9 - - 66.8 43.4 - - 53.9 88.4 - - 92.3
Baseline 59.8 79.7 84.5 68.8 55.8 76.9 82.4 65.5 34.5 57.9 64.1 45.4 76.0 90.3 95.5 82.6
Ours 65.1 81.2 87.1 72.6 71.6 86.6 90.9 78.9 43.8 63.1 71.0 52.5 80.7 94.7 97.3 86.9

Table 2: Ablation studies of our proposed method.

Source Sampler GradDrop PRID GRID
R-1 mAP R-1 mAP

M+C2+
D+C3+
CS

59.2 69.6 43.0 53.2
✓ 73.0 79.6 49.5 58.9

✓ 68.0 76.7 51.8 59.3
✓ ✓ 74.4 81.6 49.9 59.6

variance. After moving to the last group in the sequence, the sliding
window will restart from the first group.

4 EXPERIMENTS
4.1 Datasets and Evaluation Settings
To evaluate the effectiveness of our proposed method to improve
the generalization capability, we conduct experiments on the pub-
lic person Re-ID datasets, In the DG Re-ID task, source domains
include 6 datasets CUHK02 [19], CUHK03 [20], Market1501 [47],
DukeMTMC-reID [51], MSMT17 [38] and CUHK-SYSU Person-
Search [40]. Unseen target domains are 4 small Re-ID datasets which
are VIPeR [8], PRID [12], GRID [23], and QMUL i-LIDS [49]. We de-
note CUHK02 as C2, CUHK03 as C3, Market1501 as M, DukeMTMC-
reID as D, CUHK-SYSU as CS, and MSMT17 as MT. In training stage,
both train and test split subsets on each source domain are used. In
evaluation stage, the evaluation protocol follows by [29] on four
unseen target domains. Evaluation metrics are mean Average Pre-
cision (mAP) and Cumulative Matching Characteristic (CMC) at
Rank-k, commonly adopted in Re-ID task.

4.2 Implementation Details
We adopt ResNet-50 with ibn-a blocks [27] pre-trained on ImageNet
as our backbone and a classifier with total identities on all training
source domains. In training stage, the mini-batch size is 64 (32 IDs, 2
instances). We take the random flipping with a probability of 0.5 and

Figure 3: Comparisons between variance-varying gradient
dropout and regular gradient dropout. Regular gradient
dropout is sensitive to the probability value while proposed
gradient dropout is stable in high performances. It demon-
strates that our proposed method whether to divide by 𝑝 is
effective to prevent over-fitting compared with the regular.

pad 10 pixels on the image border, then randomly cropped to 256 ×
128. The model is trained for 100 epochs by SGD optimizer with
a momentum of 0.9 and a weight decay of 5e-4. The learning rate
warms up from 7.7e-5 to 1e-2 in the first 10 epochs and the backbone
is frozen in the warm-up time. Then the learning rate is divided
by 10 in the 50th and 90th epochs, respectively. The learning rate
of classifier is multiplied by 10, followed by [13]. For the proposed
gradient dropout, we divide the network into 6 groups which the
number of groups is 5 in backbone and 1 in classifier. In ResNet,
the first group contains the first convolution layer and BN layer.
The other groups correspond to each ResNet stage, respectively.
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Table 3: Analyses of our proposed method on extremely im-
balanced sources. SW: sliding-window behavior. sub: subsets

Source Method VIPeR PRID
R-1 mAP R-1 mAP

M+D+
C3+MT

Baseline 59.8 68.8 55.8 65.5
GradDrop 63.1 71.6 61.6 72.7

SW W/o split 62.2 71.3 61.7 72.4
SW+all sub 58.6 67.3 52.3 62.4

SW+repeat sub 59.3 68.9 60.8 69.1
SW+discard sub 62.2 71.0 67.4 75.5
+GradDrop 65.1 72.6 71.6 78.9

Figure 4: Quantitative analyses on the effectiveness of
stochasticity. By comparison between the baseline with 1x
learning rate and it with 10x learning rate in classifier, the
stochasticity can effectively improve the generalization capa-
bility. By observing the loss curve and the training accuracy
curve, it verifies our approach brings more positive stochas-
ticity and prevent a model from over-fitting.

4.3 Comparisons with State-of-the-Arts
In this section, we evaluate our proposed method with state-of-the-
arts on two DG Re-ID benchmarks, as shown in Tab. 1.
Sources:M+C2+D+C3+CS.Among all methods, RaMoE [4] achieved
impressive results on i-LIDS dataset, the smallest target domain.
Our proposed method outperforms significantly RaMoE on three
other larger datasets. MetaBIN [3] has a superior performance on
VIPeR dataset in evaluation metric R-5, but our method performs
better on other target domains and the mAP on four datasets is
higher than MetaBIN. Meanwhile, we trained MetaBIN and our
model for 184,000 iterations with one RTX3090 NVIDIA GPU and
the same coding framework [10]. The training time of MetaBIN is
about 40 hours by meta learning while ours is about 9 hours.

Table 4: Analyses of subset size and sliding window in pro-
posed sampler.

Source Sub.size Win.size Win.step mAP
PRID GRID

M+C2+
D+C3+
CS

2000
4 3

78.9 57.6
3500 78.7 58.3

7264
(min.source)

81.6 59.6
5 5 79.9 56.0
4 4 79.8 57.7
4 2 77.6 59.2
3 3 76.9 55.9
3 2 77.1 58.5
2 1 70.2 59.5

Sources: M+D+C3+CS. Our method outperforms RaMoE in three
larger datasets. It verifies that ours is effective to help the model
step out of local minimums and search for a better solution, i.e.,
improving holistic generalization capability of a model. Moreover,
similar performances on two benchmarks further demonstrate that
our model is stable and effective.

4.4 Perfomance Analyses
Ablation studies of proposed method. In Tab. 2, it is obvious
that two proposed methods can greatly improve the generalization
capability, respectively. Compared with the respective roles of the
two proposed methods, the combination of them achieves a more
generalizable performance, especially in mAP.
Analyses of the proposed method on extremely imbalanced
sources. For the C2-C3-M-D-CS setting, the number of samples
on these domain is relatively balanced. Further to demonstrate our
proposed sampler is effective to tackle the problem of extremely
imbalanced source domains, we conduct experiments on C3-M-D-
MT setting. The number of samples on MSMT17 dataset is about
126,000 while three other dataset is about 80,000 in total. Therefore,
there exists extreme imbalance among these source domains. As
shown in Tab. 3, we verify different operations of our proposed
sampler. If directly combine all source domains into training, the
performance on VIPeR and PRID is unsatisfactory, but it has an
improvement by taking our sliding-window behavior for sampling
or applying the proposed gradient dropout due to preventing the
model from preferring to dominant source domain. After splitting
source domains and sorting subsets on the condition (3), taking all
subsets in the sorted queue significantly degrades the generalization
capability because subsets in the tail of the queue all belong to
MSMT17, misleading the model to trap into the local minimum on
MSMT17. When re-balancing source domains by repeating subsets
to make sure each source domain with the same number of subsets,
its generalization improvement is limited. The proposed operation
that only keeps 𝐿𝑆 +⌊𝑇𝑆2 ⌋ subsets of MSMT17 in the tail of the queue
and discards others achieves impressive results. This operation not
only bring a better generalization capability but also needs less
samples on the absolutely dominant source domains.
Analyses of the proposed gradient dropout and regular gra-
dient dropout. We demonstrate the advantage of the proposed
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Figure 5: The t-SNE visualization on four unseen target datasets. From the visualization, the baseline fails to extract discrimina-
tive identity features on unseen targets due to over-fitting in sources, but our method is effective to pull the distance between
two features with the same identity, illustrating that ours promotes the baseline to achieve a more generalizable capability.

gradient dropout compared with the regular gradient dropout. In
the regular gradient dropout, gradients of all layers in the network
will be dropped with a probability, which just changes the original
variance proportional to the probability 𝑝 in local minimums. In the
fixed variance, it is very possible for the model to jump out of the
local minimum unsuccessfully. In Fig. 3, we conduct experiments
among regular gradient dropout, variance-varying gradient dropout
and variance-varying gradient dropout divided by probability 𝑝 ,
which are abbreviated as regular, varying and varying div.𝑝 . These
three gradient dropouts all take Bernoulli distribution to generate
binary masks. It is observed that the probability of the regular can
greatly influence the generalization performance on unseen target
domains. However, by adopting a sliding window to force the gra-
dient in constantly varying variance, it is effective for the model to
prevent over-fitting in sources. From Fig. 3, the generalization ca-
pability of the model is stable and completely outperforms regular
gradient dropouts whatever the dropout probability is. Moreover,
the method with masked gradients divided by 𝑝 also achieves ex-
cellent generalization performance, exceeding the regular method.
Nonetheless, it is inferior to the original method, because its larger
gradient variance makes the model update in a large step.
Quantitative analyses on the effectiveness of stochasticity.
Further to demonstrate that stochasticity can improve the general-
ization capability and verify the ability of our method to bright the
positive stochasticity for a model, we conduct experiments on three
settings: 1) origin baseline; 2) baseline with ten times learning rate
of classifier; 3) baseline with ten times learning rate of classifier
and our two proposals. Experimental results are exhibited in three
aspects which are loss, training accuracy and evaluation metrics
on four unseen target domains. In Fig. 4, when the learning rate of
classifier increases tenfold, the loss and training accuracy obviously
fluctuate back and forth, meaning the model is in stochasticity.
This stochasticity leads to a higher performance of R-1 and mAP
on targets. Compared with setting classifier at ten times learning
rate, our proposed methods promote the model to experience more
violent randomness and experiments demonstrate that randomness
brought by the proposal is positive.

Analyses of subset size and sliding window in proposed sam-
pler. As shown in Tab. 4, we conduct experiments about three
attributes in our proposed sampler: 1) the subset size (𝑆𝑙 in Sec
3.2); 2) the sliding window size; 3) the sliding window step. For the
subset size, it is the best solution to directly select the minimum size
among source domains. If the size of subset is small, data exhaustion
reaches in a short time. It will cause frequent domain changes and
hinder the model learn a stable representation. For window size,
the small size means that the model cannot learn more complex
cross-domain information. For window step, it is beneficial to retain
one of the subsets in the last episode.
The t-SNE visualization. Intuitive to demonstrate our method
can effectively improve generalization capability compared with
the baseline, we visualize query features and gallery features on 4
target domains by t-SNE, shown in Fig. 5. For baseline, it is obvious
that baseline is over-fitting to source domains and lacks the ability
to extract identical features from the same identity on the query and
the gallery. However, our approach prevents the model from over-
fitting in sources and is generalizable to unseen target domains.

5 CONCLUSIONS
In this paper, we revisit the stochastic learning in DG person Re-
ID and propose two stochastic behaviors, i.e., stochastic splitting-
sliding sampler from view of data distribution and variance-varying
gradient dropout from view of optimization process. The proposed
sampler keeps various source dominance in two adjacent training
episodes and the proposed gradient dropout assists the model to
step out of local minimums and search for an optimal solution
by constantly varying its gradient variance. Experiments demon-
strate that our method can improve the generalization capability on
relatively balanced or extremely imbalanced source domains, and
outperforms state-of-the-art methods on public DG person Re-ID
benchmarks, verifying the effectiveness of our proposal.
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A PROOF OF PROPOSITION 2
Proposition 2. Let the binary mask M sampled from Bernoulli
distribution with a probability 𝑝 and the new gradient 𝑔

′
=
M·𝑔
𝑝 , the

expectation E of 𝑔
′
approaches to be zero and the variance approaches

1
𝑝 times the variance of 𝑔, when the model traps into a local minimum.
Proof. When the model reaches a local minimum during train-
ing, i.e., 𝑔 ≈ 0, so the expectation E[𝑔] ≈ 0. For the binary maskM
independent of gradients, the expectation of 𝑔

′
is

limL𝐸→L∗𝐸 E[𝑔
′] = limL𝐸→L∗𝐸

E[M]E[𝑔]
𝑝

= limL𝐸→L∗𝐸
𝑝E[𝑔]
𝑝

= 0
, (8)

where L∗
𝐸
represents the local minimum loss.

The variance of 𝑔
′
can be defined as

limL𝐸→L∗𝐸 𝑉𝑎𝑟 [𝑔
′] = limL𝐸→L∗𝐸 E[

M2𝑔2

𝑝2
] − E2 [M𝑔𝑝 ]

= limL𝐸→L∗𝐸
E[M2 ]E[𝑔2 ]

𝑝2

= limL𝐸→L∗𝐸
𝑝E[𝑔2 ]
𝑝2
− 0

= limL𝐸→L∗𝐸
E[𝑔2 ]−E2 [𝑔]

𝑝

=
𝑉𝑎𝑟 [𝑔]
𝑝

,

(9)

B MORE IMPLEMENTATION DETAILS
We use the cross-entropy loss with 0.1 label smoothing. The output
feature dimension is 2048 and a batch normalization is inserted
between the backbone and the classification. For SGD optimizer,
Nesterov is set to true. Moreover, results of the baseline shown in
all tables are based on baseline with 10x learning rate in classifier.

C SUPPLEMENTARY EXPLANATIONS AND
EXPERIMENTAL ANALYSES

C.1 Supplementary explanations about
proposed sampler

The retained number of subsets 𝐿𝑆 + ⌊𝑇𝑆2 ⌋. Firstly, to prevent
all selected subsets only from the largest source domain in two

continuous episodes, the number of retained subsets of the largest
domain in the tail must be less than 𝐿𝑆 +𝑇𝑆 . Secondly, considering
the number of different subsets between two continuous episodes
is 𝑇𝑆 , we set the number of retrained subsets to be 𝐿𝑆 + ⌊𝑇𝑆2 ⌋ to
ensure that newly selected subsets in the second episode are mainly
from different domains.
The source order sensitivity in the proposed sampler. We
conduct experiments on the source order "C2-C3-M-D-CS" and
the randomly selected source order "D-CS-C2-M-C3". The perfor-
mances are only slightly different. On VIPeR dataset, the rank-1
value changes from 61.5 to 61.3, which is 0.2% lower, while on the
mAP metric, the random order performance changes from 69.2
to 69.4, which is 0.2% higher. On GRID dataset, the rank-1 value
changes from 49.9 to 50.2, which is 0.3% higher, and the mAP values
are the same. It reveals that the proposed sampler is not sensitive
to the order of source domains.

C.2 Supplementary explanations about
proposed gradient dropout

Comparisons between the sliding-window behavior and ran-
domly selected behavior.We randomly select 𝐿𝐺 layers in each
iteration and then conduct experiments on the C2-C3-M-D-CS set-
ting. From results in Tab. 5, random gradient dropout is effective to
improve the performance compared with the baseline, but inferior
to the sliding-window behavior. It verifies that applying gradient
dropout in continuous layers is better than that in discrete layers.
Performance comparisons in Fig. 3 of the main paper. In
the condition of 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 + 𝑑𝑖𝑣 .𝑝 , results of p=0.2 and p=0.8 are
shown in Tab. 6. From Tab. 6, it reveals that performance com-
parisons among three conditions usually follow such rules: "vary-
ing">"varying+div.p">"regular". Therefore, we only show results of
p=0.5 in the paper as the best performance. Moreover, compared
with regular dropout (applied in all layers), it demonstrates that
the key to the model to escape from local minimums relies on
the change of gradient variance rather than the value of gradient
variance. Meanwhile, large variance of gradients will hinder the
model converging in the late training episodes. In the early training
episodes, preventing the model from trapping into local minimums

Table 5: Comparisons between the sliding-window behavior
and random selected behavior.

Source Behavior PRID GRID
R-1 mAP R-1 mAP

M+C2+D
+C3+CS

Random 70.3 78.2 48.3 57.8
sliding-window 74.4 81.6 49.9 59.6

Table 6: Extra results of the condition 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 + 𝑑𝑖𝑣 .𝑝.

Source Probability VIPeR PRID
R-1 mAP R-1 mAP

M+C2+D
+C3+CS

0.2 57.1 65.5 70.3 78.3
0.8 60.0 68.0 70.9 80.1
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Table 7: Comparison with State-of-the-Arts on Protocol-1 and Protocol-2. Protocol-1: use only train split subset on each source
domain. Protocol-2: use train and test split subsets on each source domain.

Evaluation Setting Method Source
Market-1501

Source
DukeMTMC-reID

R-1 mAP R-1 mAP

Protocol-1

M3L (ResNet-50) [45]

D+C3+MT

74.5 48.1

M+C3+MT

69.4 50.5
M3L (IBN-Net50) [45] 75.9 50.2 69.2 51.1

Baseline 73.2 46.5 66.7 47.6
Ours 78.0 51.0 71.0 52.3

Protocol-2
RoMoE [4]

D+C3+MT
82.0 56.5

M+C3+MT
73.6 56.9

Baseline 78.6 53.9 69.1 52.3
Ours 82.5 58.3 73.7 57.6

Table 8: Analyses of sliding window in proposed GradDrop.

Source Slide.epoch Win.size Win.step mAP
PRID GRID

M+C2+
D+C3+
CS

5
2 1

80.8 57.4
20 80.5 58.4

10

81.6 59.6
2 2 77.3 58.1
1 1 81.3 58.9
3 1 77.4 56.9
3 3 79.3 57.2

is effective to aid the model to search for a better solution, but in
the late training episodes, the model is expected to converge rather
than vary.
Analyses of sliding window in proposed gradient dropoutWe
analyse influences on the model in three aspects: 1) sliding epoch; 2)
sliding window size; 3) sliding window step. In Tab. 8, it is harmful
to the generalization capability of the model if the sliding window
moves too fast or too slowly i.e., necessary to wait for the model to
approach a local minimum or assist the model in stepping out of
over-fitting traps in time. From experimental results, the suitable
number of sliding epoch is set to 10. For window size and window

step, it can be observed that small window sizes and steps are bene-
ficial for the model to achieve better generalization capability. This
means the value of gradient variance should vary in the relatively
small interval based on the original variance. From Tab. 8, the best
window size and window step are 2 and 1, respectively.

C.3 Evaluations on large-scale datasets
Further to verify the effectiveness of our proposals when eval-
uating large-scale datasets, we conduct experiments on two set-
tings which are D+C3+MT->M and M+C3+MT->D. For C3+D+MT-
>M, sources domains are DukeMTMC-reID, CUHK03 and MSMT17
while evaluating on Market-1501. For M+C3+MT->D, sources do-
mains are Market-1501, CUHK03 and MSMT17 while evaluating
on DukeMTMC-reID. Fair to compare with state-of-the-arts, we
adopt two evaluation settings, i.e., protocol-1 following [45] and
protocol-2 following [4]. Two protocols are different in two as-
pects: (1) For CUHK03 (C3), the detected subset of the old protocol
(26,263 images of 1,367 IDs for training) is used in Protocol-1, but in
Protocol-2, they adopt the old protocol (14,097 images of 1,467 IDs
for training). (2) For training, in Protocol-1, only train split subset is
adopted, while they use train and test split subsets on each source
domain in Protocol-2. As shown in Tab. 7, our proposal outperforms
the state-of-the-arts on both two evaluation settings, verifying the
robustness of our approach.
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